Contents

Chapter 1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>14</td>
</tr>
<tr>
<td>1.2</td>
<td>15</td>
</tr>
<tr>
<td>1.3</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>18</td>
</tr>
<tr>
<td>1.6</td>
<td>18</td>
</tr>
</tbody>
</table>

Chapter 2 Getting Started

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>30</td>
</tr>
<tr>
<td>2.12</td>
<td>30</td>
</tr>
<tr>
<td>2.13</td>
<td>31</td>
</tr>
<tr>
<td>2.14</td>
<td>31</td>
</tr>
</tbody>
</table>
Chapter 5 Data Handling

5.1 How to Add, Remove or Interpret Alias Names
5.2 Creating Data
5.3 Opening Data
5.4 Saving/Copying Data
5.5 Deleting Data
5.6 Renaming Data
5.7 Searching/Finding Data
5.8 Handling Data Files

Chapter 6 Parameter Handling

6.1 Processing Parameters
6.2 Acquisition Parameters
How to Set an Acquisition Parameter from the Command Line .100
How to Set Acquisition Parameters from the Parameter Editor .101
How to Undo the Last Acquisition Parameter Change103
How to Set Pulse Program Parameters103
How to Display Acquisition Status Parameters103
How to Get Probehead/Solvent dependent Parameters103
How to Change Acquisition Data Dimensionality104
How to Set Lock Parameters .104
How to Set Routing Parameters .104

Chapter 7 Data Processing ... 106
7.1 Interactive Processing .. 106
How to Process Data with Single Commands106
How to Process data with Composite Commands107
7.2 Semi-automatic Processing .107
How to Use the 1D Processing Dialog .107
How to Use the Processing Guide in Automatic mode108
How to Use the Processing Guide in Interactive mode110
7.3 Processing Data with AU programs .110
7.4 Serial Processing .111

Chapter 8 Printing/Exporting Data ... 116
8.1 Printing/plotting Data . 116
How to Print/Plot from the Menu .116
How to Plot Data from the Processing guide118
How to Plot Data with the Plot Editor .119
How to Print the Integral list .119
How to Print the Peak list .119
8.2 Exporting Data .120
How to Copy data to Other Applications120
How to Store (Export) a Data Window as Graphics File121
How to export projections of peak lists .121

Chapter 9 1D Display ... 124
9.1 The 1D Data Window .. 124
9.2 Displaying one Dataset in Multiple windows125
How to Reopen a Dataset in a Second/Third etc. Window125
How to Rescale or Shift one Dataset in Multiple windows126
9.3 Changing the Display of a 1D Spectrum or FID127
How to Change the Vertical Scaling of the FID or Spectrum127
How to Smoothly Change the Vertical Scaling of the FID/Spectrum . .127
How to Change the Horizontal Scaling of the FID or Spectrum . . .128
How to Shift a Spectral Region to the Left or to the Right129
How to Shift the Spectrum Up or Down .. 129
9.4 Using the Tab bar ... 130
How to Display the Spectrum ... 130
How to Set Processing Parameters ... 131
How to Set Acquisition Parameters 132
How to Edit the Title .. 133
How to Edit the Pulse Program .. 134
How to Display the Peak list .. 134
How to Display the Integral list ... 143
How to View Sample Information ... 151
How to Open the Jmol Molecule Structure Viewer 152
How to Display the FID .. 154
9.5 1D Display Options .. 154
How to Toggle between Hertz and ppm Axis Units 154
How to Switch on/off the Spectrum Overview display 154
How to Switch Y-axis Display .. 155
9.6 Show Display Properties/Regions/Files 155
How to Superimpose the Cursor Information 157
How to Superimpose the Title on the Spectrum 158
How to Superimpose the main Status Parameters on the Spectrum .. 158
How to Superimpose the Integral Trails/Labels on the Spectrum 158
How to Display the Main Dataset Properties 159
How to Display a List of Files of a Dataset 160

Chapter 10 2D Display .. 166
10.1 The 2D Data Window .. 166
10.2 Changing the Display of a 2D spectrum 166
How to Change the Intensity Scaling (contour levels) 167
How to Smoothly Change the Vertical Scaling (contour levels) 168
How to Display a Contour Levels Bar in the Data Window 168
How to Switch on/off Square 2D layout 169
How to Zoom a 2D spectrum in/out 170
How to Shift a Spectral Region in the F2 direction (left/right) .. 171
How to Shift a Spectral Region in the F1 direction (up/down) 171
Chapter 10 Displaying 1D and 2D Spectra ... 167
10.3 Show Display Properties/Regions/Files ... 171
10.4 Using the Tab bar ... 174
 How to Set Processing Parameters .. 174
 How to Set Acquisition Parameters .. 174
 How to Display the Peak list .. 175
 How to Display the Integral list .. 176
 How to Display the FID ... 178
10.5 2D Display Options .. 178
 How to Switch between Hertz and ppm Axis Units in F2 and F1 178
 How to Switch on/off the Spectrum Overview display 178
 How to Switch on/off the Projection display 179
 How to Switch on/off the Grid display ... 181
 How to Display a 2D Spectrum in Contour Mode 182
 How to Set the 2D Contour Levels ... 183
 How to Store interactively set Contour Levels 184
 How to Display a 2D spectrum in Pseudo Color Mode 185
 How to Display a 2D Spectrum in Oblique Mode 185
 How to Rotate a 2D Spectrum in Oblique Mode 187
 How to Switch between Displaying Positive and Negative levels .

Chapter 11 nD Display ... 188
11.1 Display Planes of 3D Data ... 188
 How to Switch to 2D Plane Display ... 189
 How to Display various Plane Orientations 189
 How to Display various Plane Positions (numbers) 190
11.2 3D Cube Display Mode ... 191
 How to Display the 3D Cube .. 191
 How to Rotate the 3D Cube ... 191
 How to Scale Up/Down the 3D Cube .. 192
 How to Reset the Cube Size and Orientation 192
 How to Switch Depth Cueing on/off .. 192
 How to Display a Cube Front or Side view 192
11.3 nD parameter display .. 192
11.4 nD Fid Display ... 194
11.5 nD Peak and Integral Display .. 195

Chapter 12 1D Interactive Manipulation ... 198
12.1 1D Interactive Window multiplication .. 198
 How to Switch to Window Multiplication Mode 198
12.2 1D Interactive Phase Correction ... 200
 How to Switch to Phase Correction Mode 200
How to Perform a Typical 1D Interactive Phase Correction201
How to Set the Phase Pivot Point .201
How to Perform Default Zero Order Phase Correction202
How to Perform Interactive Zero Order Phase Correction202
How to Perform Interactive First Order Phase Correction202
How to Perform 90, -90 or 180° Zero Order Phase Correction . .202
How to Reset the Phase to the Original Values202
How to Change the Mouse Sensitivity .203
How to Return from Phase Correction Mode with/without Save . .203

12.3 1D Interactive Integration .203
How to Switch to Integration Mode .204
How to Define Integral Regions .205
How to Select/Deselect Integral Regions206
How to Read Integral Regions from Disk207
How to Perform Interactive Bias and Slope Correction208
How to Set the Limit for Bias Determination209
How to Change the Mouse Sensitivity .209
How to Calibrate/Normalize Integrals .209
How to Scale Integrals with respect to Different Spectra210
How to Delete Integral Regions from the Display210
How to Scale Selected Integrals .211
How to Move the Integral Trails Up/Down212
How to Cut Integral Regions .212
How to Save Integral Regions .213
How to Undo the Last Region Operation213
How to Return from the Integration Mode with/without Save . .213
How to deconvolve overlapping peaks from integration mode . .214

12.4 1D Interactive Calibration .217
How to Switch to Calibration Mode .217
How to Calibrate a Spectrum Interactively217

12.5 1D Multiple Display .218
How to Switch to Multiple Display Mode and Read Multiple Spectra
How to work with multiple display command .mdl221
How to Select/Deselect Datasets .221
How to Remove a Dataset from Multiple Display222
How to Display the Sum or Difference Spectra222
How to Save the Sum or Difference Spectra222
How to Display the Next/Previous Name/Expno223
How to Toggle between Superimposed and Stacked Display . . .224
How to Shift and Scale Individual Spectra224
How to move the selected spectrum one place up/down 225
How to Switch on/off the Display of Datapaths and Scaling Factors

226

How to Return from Multiple Display mode 226
How to Set the Colors of the 1st, 2nd, . . Dataset 226

12.6 1D Interactive Baseline Correction . 226
How to Switch to Baseline Correction Mode 226
How to Perform Polynomial Baseline Correction 227
How to Perform Sine Baseline Correction 228
How to Perform Exponential Baseline Correction 228
How to Preview the Baseline Corrected Spectrum 228
How to Reset the Baseline Correction Line 229
How to Change the Mouse Sensitivity . 229
How to Save the Baseline Correction and/or Return 229
How to Perform Cubic Spline Baseline correction 230
How to Delete Spline Baseline Points from the screen 231
How to Return from Cubic Spline Baseline mode with/without Save

231

12.7 1D Interactive Peak Picking . 232
How to Switch to Peak Picking Mode . 232
How to Define New Peak Picking Ranges 233
How to Change Peak Picking Ranges . 233
How to Pick Peaks in Peak Picking Ranges only 233
How to Delete all Peak Picking Ranges . 234
How to Define Peaks Manually . 234
How to Pick Peaks Semi-Automatically . 234
How to Delete Peaks from the Peak List 235
How to Return from Peak Picking Mode with/without Save 236
How to save Peaklists and Regions in 1D interactive mode 236

Chapter 13 2D Interactive Manipulation . 238

13.1 2D Interactive Phase Correction . 238
How to Switch to 2D Interactive Phase Correction 238
How to Perform a Typical 2D Interactive Phase Correction 239
How to Scale or Shift Individual Rows/Columns 242
How to Perform Smooth Phase Correction 243
How to Perform 90, -90 or 180° Zero Order Phase Correction 244
How to Reset the Phase to the Original Values 244
How to Change the Mouse Sensitivity . 244
How to Show the Next/Previous Row or Column 244
How to Arrange Rows or Columns . 245
How to Return from Multi-1D Phase to 2D Phase Display 245
13.2 2D Interactive Integration ... 245
How to Move an Integral region 250
How to Copy an Integral region 250
How to Delete all Integral Regions 250
How to Read/Import Integral Regions 250
How to Save/Export Integral Regions 251
How to Return from 2D Integration mode 251

13.3 2D Multiple Display and Row/Column Handling 251
How Switch to Multiple Display mode and Read Multiple Spectra ...
How to Align Multiple 2D Spectra 254
How to Display the Next/Previous Name/Expno 254
How to Scan Rows/Columns .. 255
How to Grab a Row/Column ... 255
How to Show the Next/Previous Row or Column 256
How to Move the Selected Dataset Up/Down in the Dataset List ...
How to Extract a Row/Column 257
How to Copy Contour Levels from First to Other Spectra 258
How to Switch on/off 2D contour display 258
How to Position the Baseline of the Row/Column 258

13.4 2D Interactive Calibration .. 259
How to Switch to 2D Calibration mode 259
How to Perform 2D Calibration 260
How to Measure a 2D Chemical Shift Distance 260

Chapter 14 Data Window Handling 262
14.1 Data Windows .. 262
How to Move a Data Window ... 263
How to Resize a Data Window 263
How to Select (activate) a Data Window 264
How to Open a New empty Data Window 265
How to Arrange Data Windows 265
How to Iconify (minimize) a Data Window 267
How to De-iconify a Data Window 268
How to Maximize a Data Window 268
How to Restore the Size and Position of a Data Window 268
How to Close a Data Window 268
How to Iconify all Data Windows 269
How to Maximize all Data Windows 269
How to Activate the Next Data Window 269
14.2 Window Layouts ..269
 How to Save the Current Window Layout ..269
 How to Read a Window Layout ...269
 How to Swap Data Windows ..270
 How to Toggle Window Decoration ...270

Chapter 15 Analysis ...272
 15.1 Introduction ..272
 15.2 Chemical Shift Distance Measurement ...273
 How to Measure a Chemical Shift Distance ...273
 15.3 1D Signal to Noise Calculation ..273
 How to Perform Interactive S/N Calculation ..273
 How to Delete the Signal Region or Noise Region ...275
 How to Edit the Limits of the Signal Region or Noise Region ..275
 How to Change the Width of the Signal Region or Noise Region ..275
 15.4 Deconvolution ...276
 15.5 Relaxation Analysis ...280

Chapter 16 Acquisition ..288
 16.1 Acquisition Guide ...288
 16.2 Acquisition Toolbar ..290
 16.3 Data window Toolbar ...292
 16.4 Acquisition Status Bar ...294
 16.5 Command Queuing and Scheduling ...297
 16.6 Tuning and Matching the Probehead ..298
 16.7 Locking ..299
 16.8 BSMS Control Panel ...301
 16.9 Interactive Parameter Adjustment (GS) ...303
 16.10 Running an Acquisition ...305
 16.11 Shape tool ..309
 Easy definition of Shape pulses ..311

Chapter 17 Configuration/Automation ..316
 17.1 NMR Superuser and NMR Administration password ...316
 How to Change the NMR Administration Password ...317
 17.2 Configuration ...317
 How to Perform a Default Configuration on a Datastation ..318
 How to Perform a Customized Configuration on a Datastation ..318
 17.3 Parameter set conversion ...319
 17.4 Automation ..319
 How to Install AU Programs ..319
 How to Open the AU Program Dialog Box ...319
 How to Switch to the List of User defined AU Programs ...321
<table>
<thead>
<tr>
<th>Chapter 18</th>
<th>Regulatory Compliance</th>
<th>324</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Audit Trails</td>
<td>324</td>
</tr>
<tr>
<td>18.2</td>
<td>Electronic Signatures</td>
<td>329</td>
</tr>
<tr>
<td>18.3</td>
<td>Password Controlled Login Identification</td>
<td>332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 19</th>
<th>Remote Control</th>
<th>338</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Remote control</td>
<td>338</td>
</tr>
<tr>
<td>19.2</td>
<td>How to Establish a Remote Connection from your PC</td>
<td>338</td>
</tr>
<tr>
<td>19.3</td>
<td>How to Make a Remote Connection without a Local License</td>
<td>344</td>
</tr>
<tr>
<td>19.4</td>
<td>Security of Remote Connections</td>
<td>345</td>
</tr>
<tr>
<td>19.5</td>
<td>How to Access ICON-NMR from a Remote Web Browser</td>
<td>345</td>
</tr>
<tr>
<td>19.6</td>
<td>How to limit IP-Addresses for Remote Control</td>
<td>346</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 20</th>
<th>User Preferences</th>
<th>348</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>User Preferences</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>How to Open the Last Used Dataset on Startup</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>How to Define the Startup Actions</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>How to Define Auto-Termination after Idle Time</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>How to Define Auto-Locking after Idle Time</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>How to Change the Preferred Editor</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>How to Configure the Tab Bar</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>How to Configure the Right-click Menu Function</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>How to Change Colors of Data Objects on the Screen</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>How to Change Colors of Data Objects on the Printer</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>How to Change Colors of the Lock Display</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>How to Create a New Data Window Color Scheme</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>How to Read a Different Data Window Color Scheme</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>How to Change Peak and Integral table Colour/Spacings</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>How to Create Thick Lines on the Screen</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>How to Create Thick Lines on the Printer</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>How to Change All Fonts of the Topspin Interface</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>How to Change the Font of the TOPSPIN menu</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>How to Change the Font of the Tab bar</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>How to Change the Font of Dialog Boxes</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>How to Change the Font of the Browser</td>
<td>362</td>
</tr>
</tbody>
</table>
How to Change the Font of the Command Line 363
How to Change the Font of the Status Line 363
How to Auto-Archive existing expnos 363
20.2 Command Line Preferences 364
How to Resize the Command Line 364
How to Set the Minimum and Maximum Command Line Size . 365
20.3 Disabling/Enabling Toolbar Buttons, Menus and Commands . 365
How to Hide the Upper and Lower Toolbars 365
How to Hide the Menubar 366
How to Disable/Remove Toolbar Buttons 366
How to Disable/Remove Menus or Commands 367
How to (Re)enable a disabled Command/Menu 369
How to (Re)enable All Commands/Menus 369
20.4 Resizing/Shifting Toolbar Icons 369
How to Change the Toolbar Icon Size 369
How to Shift Toolbar Icons to the Right 369
20.5 Defining Source Directory for Programs/Lists etc. 370
Chapter 21 User Extensions 372
21.1 User Notebook 372
21.2 Macros 373
21.3 AU Programs 373
21.4 Python Programs 374
21.5 Button Panels 375
21.6 Adding User Defined Buttons to the Toolbars 378
21.7 Adding User Defined Menus to the Menubar 381
21.8 Adding User Defined Guides 383
Chapter 1
Introduction

1.1 About the User Manual

1. About this document

The User Manual describes the main aspects of Bruker's integrated software package TopSpin. This manual enables all users who work with Bruker software to get an overview of the various functionalities of TopSpin. The main aspects outlined in here describe the possibilities and functionaries of the TopSpin interface and elucidate working processes for data acquisition and processing.

2. Target audience

The Bruker User Manual for TopSpin 2.1 and newer supports all Bruker users who already work with Bruker software products or who newly enter the software dimension of TopSpin. The main aspect of this Manual is to enable new TopSpin users and experienced TopSpin users to work with this software package.

3. How to get the User Manual
The User Manual is available as a hard copy just like an electronically copy on the TopSpin DVD in the menu-section Help, where all other Bruker Manuals are provided, too. For detailed information about all Bruker software manuals please refer to chapter 1.4. The latest version of the User Manual is also provided on the Bruker Web Server:

http://www.bruker-biospin.com/documentation_general.html

4. How to read the User Manual

The User Manual describes especially the TopSpin interface with all its functionalities to acquire, process and interpret spectrometer data. To find information more readily you can read selected chapters, depending on your requirements, or read the User Manual in succession for general information.

1.2 Safety Regulations

In order to work safely in laboratories with NMR-spectrometers all users have to follow the safety regulations for magnetic, electrical, cryogenic and chemical safety. For detailed information please refer to the safety instructions in the Beginners Guide Manual provided on the TopSpin DVD.

1.3 User Manual Conventions

The User Manual utilizes different script types in order to make selected text more transparent and explicable to users. Please note that this document contains the following conventions:

Font Conventions

- *abs* - commands to be entered on the command line are in **Courier bold italic**
- *ProcPars* - menus, buttons, icons to be clicked are in **Arial bold**
- *fid* - filenames are in **Courier**
- *name* - any name which is not a filename is in **Arial italic**
File/directory Conventions

<tshome> - the TOPSPIN installation (home) directory

User Action Conventions

+ a single user action
1. the first action of a sequence
2. the second action of a sequence
3. etc.
 a) the first action of a sub-sequence
 b) the second action of a sub-sequence
 c) etc.

1.4 TOPSPIN Overview

Functionality

TOPSPIN is an integrated software package for:

• Displaying NMR spectra
• Printing and plotting spectra
• Exporting displays and plots in various graphics and metafile formats
• Importing NMR data from files of various formats
• Archiving spectra in various formats such as JCAMP-DX and ZIP
• E-mailing data
• Processing 1D-6D fids and spectra: window multiplication, various transforms (Fourier, Hilbert, DOSY), phase correction, baseline correction, integration, peak picking, linear prediction, smoothing, adding spectra etc.
• Displaying multiple superimposed spectra (1D and 2D).
• Simulating 1D and multi-dimensional fids, given a pulse program and a spin system (“virtual spectrometer nmr-sim”)
• Calculating T1/T2 relaxation times
• Fitting peaks with Lorentzian and Gaussian line shape models, deconvolve overlapping peaks
• Multiplet analysis
• Automatic 1D, 2D and 3D peak picking
• Automatic 1D, 2D and 3D integration
• Line shape analysis of solids spectra
• Data acquisition with Bruker Avance type spectrometers
• Supporting automated and walk-up spectrometers (ICON-NMR)
• Remote spectrometer control including web-enabled ICON-NMR
• Adding user defined functionalities to TOPSPIN (AU programs, Macros and Python programs)

Available Documentation

In TOPSPIN 2.1 and newer the Help => Manuals submenu, contains list of available manuals for the following items:

General
Beginners Guides
Acquisition - Users Guides
Acquisition - Application Manuals
Acquisition & Processing Reference
Automation and Plotting
Analysis and Simulation
Programming Manuals
Technical Manuals
Installation Guides
Good Laboratory Practice

Each document is listed with a short description of its contents.
1.5 TOPSPIN license

TOPSPIN requires a license for startup. A license can be ordered online from:

www.bruker-biospin.de/NMR/nmrsoftw/licenses/index.html

If your PC controls a spectrometer, TOPSPIN will start up without a license. Furthermore, you can use TOPSPIN for developer purposes with restricted functionality. In this case you have to start it from a Windows Command prompt or Linux shell as follows;

```
topspin -developer
```

1.6 TopSpin program versions

The TopSpin DVD (2.1 and newer) contains the following program versions:

- TOPSPIN
- TOPSPIN Plot Editor
- ICON-NMR
- NMR-SIM
- NMR-GUIDE
- AUTOLINK

The following programs are distributed as part of the TopSpin DVD, but they must be licensed separately:

- AMIX
- AUREMOL
- PERCH NMR TOOLS (only for Windows operating system)
2.1 Startup TOPSPIN

Under Windows
+ Click the TOPSPIN icon on the desktop

or

+ Start TOPSPIN from a Command Prompt as follows:
 1. Click Start => Run, enter cmd and click OK
 2. In the Command Prompt:
 a) Enter cd <tshome>
 b) Enter topspin

where <tshome> is the directory where TOPSPIN is installed.

Under Linux
1. Open a Linux Shell or Terminal Window
2. In the Shell/Terminal:
 a) Enter cd <tshome>
 b) Enter ./topspin
where <tshome> is the directory where TOPSPIN is installed.

Startup TOPSPIN specifying dataset

Topspin can be started with a dataset option:

1. Open a Windows Command Prompt or Linux Shell
2. Enter `topspin -j TOP_DATA:<dataset path>`

The specified dataset is automatically displayed after startup.

Examples:

- `topspin -j TOP_DATA:c:\bio\data\guest\nmr\exam1d_1H\1\pdata\1`
- `topspin -j TOP_DATA:c:\bio\data\guest\nmr\exam1d_1H\1\pdat-a\1\1r`
- `topspin -j TOP_DATA:c:\jcamp.dx`
- `topspin -j TOP_DATA:c:\data-archive.zip`

2.2 Configuration

After the installation of TOPSPIN, it must be configured once. TOPSPIN may be used in two different ways:

on a computer which controls a spectrometer

The command `cf` must be executed once, to configure the spectrometer hardware. Just type this command and follow the instructions on the screen. At the end of the dialog, further configuration commands, like `expinstall`, are offered and can be started from there.

on a computer which is used as datastation

The only configuration command to be executed is `expinstall`. This allows you to install pulse programs, AU programs, lists etc. Just type this command and follow the instructions on the screen, selecting **Installation for Datastation (default)**.

Note that the commands `cf` and `expinstall` can be started from the command line or from the **Options** or **Spectrometer** menu. However, the latter menu is only available after `cf` has been performed once, choosing
Installation for spectrometer.

After the configuration has finished, TOPSPIN is ready to be used. The configuration only needs to be repeated when you have installed a new version of TOPSPIN or if your spectrometer hardware has changed.

More details on configuration can be found in chapter 17.2 and the descriptions of cf and expinstall in the Acquisition Reference Manual.

2.3 How to Display Spectra

In this chapter, opening data in standard Bruker format is described. Opening other data formats is described in chapter 5.

Please note that a standard Bruker dataset is a directory tree rather than a single file:

\<dir>\data\user\nmr\<dataset name>\<expno>\pdata\<procno>

e.g.

c:\bruker\topspin\data\guest\nmr\exam1d_13C\1\pdata\1

How to Locate nmr data in any arbitrary directory

With TopSpin 2.5 Preview and newer, nmr data can be located in any arbitrary directory.

As described in paragraph 2.3 the standard Bruker format can still be used. The new storage format can be located in the following way:

\<dir>\<name>\<expnos>\pdata\<procnos>

e.g.

c:\mydir\sucrose\10\pdata\1

Please note the following facts about the usage of the old and new storage format:

- The old format is still valid because it is a special case of the new storage format.
- The old and new style data storage must not be mixed, this would confuse TopSpin data browser.
• The browser command *scroll to active dataset* will not work for old style data storage.

• The Bruker example datasets (if installed at all) can be found with TopSpin 2.5 and newer in

 `<TOPSPIN INSTALLATION DIR>/examdata`.

 This directory is automatically shown in the browser if enabled in the User Preferences (command `set`).

How to Open Data from the Menu

Open the **File** menu and click **Open...** A dialog box appears. Select the first option, the Browser type **File Chooser** and click **OK**. A file browser appears. Navigate to your data directory and expand it to the level of *names, expnos, or procnos* (double-click a directory to expand it). Select the desired item and click **Display**.

The selected dataset replaces the contents of the currently selected (active) window. If no data window was displayed, a new one will be created. Alternatively, you can first create a new window by clicking **Window => New Window** [Alt+w n] and then open a dataset from the file browser in that window.

The file browser can also be opened by entering `reb` on the command line.

How to Open Data from the Browser

TOPSPIN has data browser which, by default, displays the top level data directory (<dir>) with Bruker example data. You can add your own data directories, local or remote, as follows:

1. Move the cursor into the browser area

2. Right-click and choose **Add New Data Dir...** in the popup menu

3. Enter the desired data directory (<dir>) and click **OK**

Your data directory will now appear in the browser

In order to display data from the Browser, proceed as follows:

1. Expand your top level directory (<dir>) in the browser to the level of the data *name, expno or procono*
2. Select the desired item and drag it into the data area

How to Define Alias Names for Data
1. Open the dataset for which you want to define an alias name
2. Click the Alias tab at the top of the data browser.
3. Right-click in the browser and choose

 Define alias for data in selected window

Alternatively, you can enter the command `dalias` on the command line.

How to Open Data in Archive Data Directories
Topspin 2.0 and newer allows opening datasets that are stored in the following directory structures:

 `<mydata>/<name>/<expno>/pdata/<procno>`

You can do that with the TOPSPIN command `reb` or from the Operating System File Browser with Copy & Paste or Drag & Drop. Actually, the data are copied to the data directory:

 `<tshome>/data/<user>/nmr/<name>/<expno>/pdata/<procno>`

where `<tshome>` is the TOPSPIN installation directory and `<user>` is the current (internal) TOPSPIN user.

How to Open Data in Other Ways
TOPSPIN provides various other ways of displaying data. You can, for example, use command line commands like `re`, `rew`, `rep` and `dir`. Details on these features can be found in chapter 5.3 and in the Processing Reference Manual.

2.4 How to Expand a Spectral Region

To expand a certain spectral region:

 + Click-hold the left mouse button on one side of the region, drag the cursor to the other side and release the mouse.

If you want to cancel the expansion while dragging the mouse, just move the mouse out of the data area and release it.
An alternative way of expanding a region is clicking the button repeatedly and then shifting the spectrum to the proper position.

2.5 How to Display Peaks, Integrals, ... together with the Spectrum

When a spectrum is displayed, you can superimpose its title, parameters, integrals, and peaks as follows:

1. Move the cursor into the data window that contains the spectrum
2. Right-click and choose Display Properties... in the popup menu
3. Check the desired items and click OK

Please note that the selected items are only shown if they are available. For example, peaks and integrals are only shown if peak picking and integration have been performed, respectively (see also chapter 12). The number of displayed digits for the integral and peak labels can be set in the User Preferences (click Options => Preferences => Spectrum).

2.6 How to Display Projections/1D Spectra with 2D Spectra

To display projections or 1D spectra in tandem with a 2D spectrum:

1. Open a 2D spectrum
2. If no projections are shown, click the button in the upper toolbar or enter .pr on the command line.
3. Move the cursor into the F1 or F2 projection area.
4. Right-click and choose one of the options. With External Projection... an existing 1D spectrum can be read. This can be a regular 1D spectrum or a 2D projection that was stored as a 1D spectrum. With Internal Projection the positive projection can be calculated and displayed.

An alternate way to calculate projections is the following:

+ Click Processing => Display Projections...[projd]
or

+ Right-click on a 1D dataset in the browser and choose:

Display As 2D Projection

2.7 How to Superimpose Spectra in Multiple Display

TOPSPIN allows you to compare multiple spectra in Multiple Display mode. To enter this mode, click the button in the upper toolbar or enter `` on the command line. When you open a dataset now, for example drag one from the browser, it will be superimposed on the current spectrum rather than replacing it. Several multiple display functions are available now in the data window toolbar. Most importantly, you can *scale* and *shift* each spectrum individually. This allows exact alignment of corresponding peaks of different spectra.

2.8 How to Print or Export the Contents of a Data Window

How to Print Data

A **TOPSPIN** data window may contain various objects like an fid, a spectrum, expansions of a spectrum, superimposed spectra, spectrum components such as parameters, peaks, integrals, cross sections etc. Whatever the content of the data window is, it can be printed as follows: type `Ctrl+p` or click **File =》 Print...**, select **Print active window** in the appearing dialog box and click **OK**.

The other options in this dialog box enable you to use or create plot layouts. Details on this can be found in the Plot Editor manual to be found under **Help =》 Manuals =》 Plotting**.

The colors of the printed data can be chosen in the User Preferences dialog box. Just enter the command `set` or click **Options =》 Preferences...** and click **Printer** in the left part of the dialog box.

How to Copy a Data Window to Clipboard

Under MS Windows, you can easily copy the data window contents to other applications. To do that, type `copy` or click **Edit =》 Copy**. This will copy
the data window contents to the clipboard. After that you can paste the clipboard contents to any Windows application.

How to Store (Export) a Data Window as Graphics File

The clipboard and metafile formats are resizable vector formats. In addition to this, TOPSPIN allows you to save the contents of a data window in a graphics file of selectable type, e.g. *.png, *.jpg, *.jpeg, *.bmp, *.emf and *.wmf. To do that, click File => Export.... The resolution of such a screen dump equals the resolution of your screen. Note that when you import a graphics file into another program and resize it you lose information. Therefore we recommend to resample rather than resize graphics.

2.9 How to Process Data

Since this manual is not a general NMR text book, we assume here that you are familiar with terms like window multiplication, Fourier Transform, phase correction, etc.

Any Fid or a spectrum displayed in a TOPSPIN window can be processed by:

- typing a command on the command line, e.g. ft
- invoking a command from the Processing or Analysis menu, e.g. Processing => Fourier Transform...
- entering an interactive mode by clicking a tool button, e.g.
- entering a user defined command (usually an AU or a Python program, see Help => Manuals [Programming Manuals].

Processing and analysis commands require certain parameters to be set correctly. Most commands in the Processing or Analysis menu, like wm and ftf open a dialog box showing the available options and required parameters for that command. Other commands such as em, ft, ... start processing immediately. Before you use them, you must set their parameters from the parameter editor. To do that, enter edp or click the ProcPars Tab of the data window.

If you are a new or occasional user we recommend you to process your data with the TOPSPIN Processing Guide. This will guide you through the typical sequence of processing steps. To start the Processing Guide, click Processing => Data => Processing Guide. In Automatic mode,
Processing Guide will simply execute each processing command when you click the corresponding button. This requires the processing parameters to be set correctly. In interactive mode (Automatic mode unchecked), the Processing Guide will, at each step, open a dialog box offering you the available options and required parameters. For example, the phase correction button offers various automatic algorithms as well as an option to enter interactive phasing mode.

A simple way to process 1D data is the following:

1. Click **Processing => Process / Plot Current data**

2. In the appearing dialog (see Fig. 2.1):
 a) Enable the desired processing/plotting steps
 b) Set the parameter LB for Exponential multiplication
 c) Select the desired LAYOUT for plotting.
 d) Click **OK**
2.10 How to Archive Data

TOPSPIN 2.1 provides the following methods for data archiving:

- Automatic archiving of raw data after the acquisition as defined in the User preferences (click **Options** => **Preferences** => **Acquisition** => **Configure** ...)
- Copying a dataset to a desired destination directory which could for instance be located on a server. Type `wrpa`, click **File** => **Save...** or type `Ctrl+s`.
- Saving a dataset in a ZIP file. A standard Bruker dataset is a directory tree which contains several files. “Zipping” a dataset stores the entire data directory tree into a single file with the extension `.bnmr.zip`. To zip a dataset, type `tozip`, click **File** => **Save...** or type `Ctrl+s`. To unpack and display a zipped dataset, enter `fromzip`. Note that...
.bnmr.zip files are fully compatible with the well known PC zip format and can be unpacked with any common unzip utility. “Zipping” can be applied to 1D, 2D, 3D and 4D data.

- Saving a dataset in JCAMP-DX format. This format is an IUPAC standard, and is available for 1D and 2D datasets. Data and parameters are stored in readable text (ASCII) format. To store data in JCAMP, type tojdx, click File => Save... or type Ctrl+s. To convert and display a JCAMP-DX file, type fromjdx.

- E-mailing data to a desired destination. Type smail or click File => Send To.... The mailing format is either zip or JCAMP-DX, both of which allow for data compression in order to keep the transferred data size as small as possible.

2.11 How to Import NMR Data Stored in Special Formats

TOPSPIN allows you to convert various data formats to standard Bruker format for display and processing. Click File => Open... and select Open NMR data stored in special formats. Then follow the instructions on the screen.

2.12 How to Fit Peaks and Deconvolve Overlapping Peaks

Deconvolution is a useful tool to interpret complex spectra in which the peaks are not definite and clear.

Peaks of a 1D and 2D NMR spectrum can be approximated by a Lorentzian, Gaussian, or a mixture of these line shapes. Overlapping peaks may be deconvolved into a sum of such line shapes.

TOPSPIN shows the deconvolution result, i.e. peak positions, line widths and integrals on the screen and stores it in the file dconpeaks.txt. Furthermore, it switches to multiple display mode to show the original spectrum and the sum of the computed line shapes, superimposed.

To start deconvolution, expand the spectrum on the display to show the peak or peak group of interest. Then type dcon or click Analysis --> Line Shape Fitting --> Deconvolution....
2.13 How to Compute Fids by Simulating Experiments

TOPSPIN includes a “virtual spectrometer” that computes fids of any dimension. A “real” spectrometer excites a sample with high frequency pulses defined by a pulse program and measures the resulting fid. The virtual spectrometer performs this task mathematically by solving the quantum mechanical Liouville equation. The “sample” must be entered in form of a spin system description. For the computation, the same pulse program and acquisition parameters are taken as for the real experiment. The result is a time domain signal which can be processed with TOPSPIN in the same way a measured fid is processed. Techniques such a selective excitation, gradient enhanced spectroscopy, and the handling of mixtures are supported.

To start the virtual spectrometer:

+ Enter `nmrsim` on the command line or click `Analysis --> Simulate Fid`.

2.14 How to Add Your Own Functionalities

The TOPSPIN functionality can be extended with various user defined commands, programs etc.

How to Create Macros

Writing a macro is the simplest way to create a user defined command. Just enter the command `edmac`, create a file, and enter a sequence of regular TOPSPIN commands and/or Python commands. Save the file under a name of your preference. You have created a new TOPSPIN command. Just enter its name on the command line to execute it. `edmac` shows a list of all available macros and allows you to execute one.

How to Create AU (automation) Programs

Writing an AU program is another way of creating a new TOPSPIN command. AU programs are more complex and more powerful then macros. They are C-language programs, which may contain C-statements, regular TOPSPIN commands, and various predefined AU macros and functions. AU programs can perform various tasks such as dataset handling, parameter handling, acquisition, processing, analysis, and printing. Note that AU pro-
grams do not support graphics related tasks.

TOPSPIN is delivered with a large set of Bruker AU programs for data processing and acquisition. Just enter `edau` to see them listed in a dialog box. The easiest way to create a new AU program is to select a Bruker AU program, save it under a new name and modify it to your needs. The chosen name is now available as a new TOPSPIN command. Alternatively, you can open a new file from the AU dialog box and write your AU program from scratch.

For details on Bruker AU programs and writing your own AU programs, click Help => Manuals => [Programming Manuals] AU Programming.

How to Create Python Programs

Writing a Python program is yet another way of creating a new TOPSPIN command. Python is a new generation scripting and object oriented programming language. Python programs are even more powerful than AU programs. They are easy to use and allow you to execute TOPSPIN commands, handle NMR data and parameters, generate graphics, and interact with the TOPSPIN user interface via dialogs, windows etc. To create a Python program, enter the command `edpy`, select a file and insert your Python statements. Graphics and interface features programmed in Python look and work the same as regular TOPSPIN features.

For details on Python programming, click Help => Manuals => [Programming Manuals] Python Programming. The examples mentioned there, like `pycmd1`, are delivered with TOPSPIN. Just enter their names on the command line to execute them.

The Python dialog window is also available from the TOPSPIN menu:

+ Click File => Open...and select Open other file => Python program.

2.15 How to Automate Data Acquisition

TOPSPIN provides special user interfaces for automation, walk-up, biomolecular experiments, etc. To open these interfaces:

+ Type `iconnmr` or click Spectrometer => ICONNMR.
Chapter 3
The TOPSPIN Interface

3.1 New Flow User Interface with TopSpin 3.0

Beginning with TopSpin 3.0 a new flow user interface is introduced to alleviate all user processes.

Per default the known TopSpin user interface is activated, but the new flow user interface can be enabled in the User Preferences.

The new workflow-based interface, with its applicable arrangement of all
working processes, allows the user to control intuitional the workflows.

The Flow menu opens a horizontal feature list which stays open with one click and all functionality concerning this process are available and can be started with one click.

Furthermore a mouse contact of the functionality opens a balloon help and one click leads to the continuative menu.

The yellow data button in the upper left corner replaces the File menu. Accesorily all buttons appear in a new design and can be detached from the default position.

3.2 The Topspin Window

The TOPSPIN window consists of a data area, a data browser, toolbars and a menubar. Note that the browser can be inactive [hit $\texttt{Ctrl+d}$] or displayed
The TOPSPIN Interface

as a separate window.

Fig. 3.2 shows the Topspin window with two data windows in the data area and the browser as an integral part.

Figure 3.2

Note that the menus and toolbars depend on the data dimensionality. The descriptions below holds for 1D data. For 2D and 3D data, the menus and toolbars are similar and will be discussed in the chapters 10, 11 and 13, respectively.
How to Use Multiple Data Windows

TOPSPIN allows you to use multiple data windows. Data windows can be opened from the browser or from the Window menu. They can contain the same of different datasets. Data windows can be arranged from the Window menu. One of them is the active (current) data window. The active data window:

- is the only data window receiving commands from the command line
- can be selected by clicking inside the window or hitting F6 repeatedly.
- has a highlighted title bar
- has the mouse focus

A cursor line (1D) or crosshair (2D) is displayed in all data windows at the same position. Moving the mouse affects the cursor in all data windows.

How to Use the Menu bar

The menu bar contains the following menus:

- **File**: performing data/file handling tasks
- **Edit**: copy & paste data and finding data
- **View**: display properties, browser on/off, notebook, command history
- **Spectrometer**: data acquisition and acquisition related tasks
- **Processing**: data processing
- **Analysis**: data analysis
- **Options**: setting various options, preferences and configurations
- **Window**: data window handling/arrangement
- **Help**: access various information, indices, manuals etc.

Experienced users will usually work with keyboard commands rather than menu commands. Note that the main keyboard commands are displayed in square brackets [] behind the corresponding menu entries. Furthermore, right-clicking any menu entry will show the corresponding command, unless right-clicking is defined otherwise.¹
How to Use the Upper Toolbar (1D data)

The upper toolbar contains buttons for data handling, switching to interactive modes, display settings, and starting acquisition.

Buttons for data handling:

- [Create a new dataset\(\text{Ctrl}+n, \text{new}\)]
- [Open a dataset \(\text{Ctrl}+o, \text{open}\)]
- [Save the current dataset \(\text{Ctrl}+s, \text{sav}\)]
- [Email the current dataset[smail]]
- [Print the current dataset \(\text{Ctrl}+p, \text{print}\)]
- [Copy the data path of the active data window to the clipboard [copy]]
- [Paste the data path on the clipboard to the active data window [paste]]
- [2d Switch to the last 2D dataset \[.2d\]]
- [3d Switch to the last 3D dataset \[.3d\]]

For more information on dataset handling, please refer to chapter 5.3.

Buttons for interactive functions

1. Right-click an entry part of the menubar and choose *Define Right-click Action.*
The functions of the individual buttons are:

- Enter phase correction mode
- Enter calibration mode
- Enter baseline correction mode
- Enter peak picking mode
- Enter integration mode
- Enter multiple display mode
- Enter distance measurement mode

For more information on interactive functions, refer to chapter 12 and 14.

Buttons for display options

The functions of the individual buttons are:

- Toggle between Hz and ppm axis units
- Switch the y-axis display between abs/rel/off
- Switch the overview spectrum on/off
- Toggle grid between fixed/axis/off

How to Use the Lower Toolbar (1D data)

The lower toolbar contains buttons for display functions.

Buttons for vertical scaling (intensity)

- Increase the intensity by a factor of 2 [2]
Decrease the intensity by a factor of 2 [\(\frac{1}{2}\)]

Increase the intensity by a factor of 8 [\(8\)]

Decrease the intensity by a factor of 8 [\(\frac{1}{8}\)]

Change the intensity smoothly

Reset the intensity (baseline positions remains unchanged)

Note that vertical scaling can also be changed with the mouse wheel.

Buttons for horizontal scaling (zooming):

- [Reset zooming (horizontal scaling) to full spectrum [\(.hr\)]
- [Display the entire spectrum (baseline position and intensity scaling are adjusted if necessary) [\(.all\)]
- [Zoom in to the center (spectrum) or left edge (FID) of the displayed region, increasing the horizontal scaling. [\(.zi\)]
- [Zoom in/out smoothly]
- [Zoom out from the center (spectrum) or left edge (FID) of the displayed region, decreasing horizontal scaling) [\(.zo\)]
- [Exact zoom via dialog box[.zx]
- [Toggle interactive zoom mode. When switched off, interactive zooming only selects a horizontal region; baseline position and intensity scaling remain the same. When switched on, interactive zooming draws a box selecting the corresponding area.]
- [Undo last zoom [.zi]
- [Retain horizontal and vertical scaling when modifying dataset or changing to different dataset. Global button for all data windows]
[.keep]

Buttons for horizontal shifting

← ← → →

← Shift to the left, half of the displayed region [.sl]

↔ Smoothly shift to the left or to the right

→ Shift to the right, half of the displayed region [.sr]

→ Shift to the extreme left edge of the spectrum [.sl0]

→ Shift to the extreme right edge of the spectrum [.sr0]

Buttons for vertical shifting

↑ ↓ ↓

↑ Shift the spectrum baseline to the middle of the data field [.su]

↓ Smoothly shift the spectrum baseline up or down.

↓ Shift the spectrum baseline to the bottom of the data field [.sd]

For more information on display options, please refer to chapter 9.5 (1D data) and 10.5 (2D data).

3.3 Command Line Usage

How to Put the Focus in the Command Line

In order to enter a command on the command line, the focus must be there. Note that, for example, selecting a dataset from the browser, puts the focus in the browser. To put the focus on the command line:

+ Hit the Esc key

or
How to Retrieve Previously Entered Commands

All commands that have been entered on the command line since TOPSPIN was started are stored and can be retrieved. To do that:

+ Hit the \(\uparrow\) (Up-Arrow) key on the keyboard

By hitting this key repeatedly, you can go back as far as you want in retrieving previously entered commands. After that you can go forward to more recently entered commands as follows:

+ Hit the \(\downarrow\) (Down-Arrow) key on the keyboard

How to Change Previously Entered Commands

1. Hit the \(\leftarrow\) (Left-Arrow) or \(\rightarrow\) (Right-Arrow) key to move the cursor

2. Add characters or hit the Backspace key to remove characters

3. Mark characters and use Backspace or Delete to delete them, Ctrl+c to copy them, or Ctrl+v to paste them.

In combination with the arrow-up/down keys, you can edit previously entered commands.

How to Enter a Series of Commands

If you want to execute a series of commands on a dataset, you can enter the commands on the command line separated by semicolons, e.g.:

\[
\text{em; ft; apk}
\]

If you intend to use the series regularly, you can store it in a macro as follows:

+ right-click in the command line and choose Save as macro.

3.4 Command Line History

TOPSPIN allows you to easily view and reuse all commands, which were previously entered on the command line. To open a command history control window; click View ➞ Command Line History, or right-click in the
command line and choose *Command Line History*, or enter the command `cmdhist` (see Fig. 3.3).

![Command History - cmdhist](image)

Figure 3.3

It shows all commands that have been entered on the command line since TOPSPIN was started. You can select one or more commands and apply one of the following functions:

Execute

Execute the selected command(s).

Append

Append the (first) selected command to the command line. The appended command can be edited and executed. Useful for commands with many arguments such as `re`.

Save as...

The selected command(s) are stored as a macro. You will be prompted for the macro name. To edit this macro, enter `edmac <macro-name>`. To execute it, just enter its name on the command line.

3.5 Starting TOPSPIN commands from a Command Prompt

TOPSPIN commands can be executed outside of the TOPSPIN interface, from a Windows Command Prompt or Linux Shell.
The TOPSPIN Interface

Under Windows
1. Open a Windows Command Prompt
2. Enter a TOPSPIN command in the following format:

 \(<tshome>\prog\bin\sendgui <topspincommand>\)

 where \(<tshome>\) is the TOPSPIN installation directory.

 Examples:

 C:\ts2.1\prog\bin\sendgui ft
 executes a 1D Fourier transform.

 C:\ts2.1\prog\bin\sendgui re exam1d_1H 1 1 C:/bio j"oe
 reads the dataset C:/bio/joe/nmr/exam1d_1H/1/pdata/1.

Under Linux
1. Open a Linux Shell
2. Enter a TOPSPIN command in the following format:

 \(<tshome>\prog\bin\scripts\sendgui <topspincommand>\)

 or

 sendgui <topspincommand>

 if the TOPSPIN home directory is in the users search path.

 Examples:

 C:\ts2.1\prog\bin\scripts\sendgui ft
 executes a 1D Fourier transform.

 sendgui re exam1d_1H 1 1 C:/bio j"oe
 reads the dataset C:/bio/joe/nmr/exam1d_1H/1/pdata/1.

Note that commands are executed on the currently active TOPSPIN data window.
3.6 Function Keys and Control Keys

For several TOPSPIN commands or tasks, you can use a control-key or function-key short cut.

Focus anywhere in TOPSPIN

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esc</td>
<td>Put the focus in the command line</td>
</tr>
<tr>
<td>Shift+Esc</td>
<td>Display menu bar and toolbars (if hidden)</td>
</tr>
<tr>
<td>F2</td>
<td>Put the focus in the browser</td>
</tr>
<tr>
<td>F1</td>
<td>Search for string in command help or NMR Guide [help]</td>
</tr>
<tr>
<td>F6</td>
<td>Select the next window in the data area</td>
</tr>
<tr>
<td>Alt+4</td>
<td>Terminate TOPSPIN [exit]</td>
</tr>
<tr>
<td>Ctrl+d</td>
<td>Switch the browser on/off</td>
</tr>
<tr>
<td>Ctrl+o</td>
<td>Open data [open]</td>
</tr>
<tr>
<td>Ctrl+f</td>
<td>Find data [find]</td>
</tr>
<tr>
<td>Ctrl+n</td>
<td>New data [new]</td>
</tr>
<tr>
<td>Ctrl+p</td>
<td>Print current data [print]</td>
</tr>
<tr>
<td>Ctrl+s</td>
<td>Save current data [sav]</td>
</tr>
<tr>
<td>Ctrl+w</td>
<td>Close active window [close]</td>
</tr>
<tr>
<td>Ctrl+c</td>
<td>Copy a text that you selected/highlighted in an error box, dialog box, pulse program, title etc., to the clipboard</td>
</tr>
<tr>
<td>Ctrl+v</td>
<td>Paste text from the clipboard into any editable field.</td>
</tr>
</tbody>
</table>

Focus in the Command Line

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+Backspace</td>
<td>Kill current input</td>
</tr>
<tr>
<td>Ctrl+Delete</td>
<td>Kill current input</td>
</tr>
<tr>
<td>UpArrow</td>
<td>Select previous command (if available).</td>
</tr>
<tr>
<td>DownArrow</td>
<td>Select next command (if available).</td>
</tr>
</tbody>
</table>
Focus in the "striped" tables (e. g. edsolv, ednuc, peaks, ints, cortab etc.)

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl + C</td>
<td>copy the currently selected table rows to the system's clipboard as a CSV-formatted table.</td>
</tr>
<tr>
<td>Home</td>
<td>The table package assumes that data will always be represented by complete rows rather than individual cells. This makes a re-binding of [Home] necessary, to enforce the behaviour of jumping to the first row.</td>
</tr>
<tr>
<td>Shift + Home</td>
<td>The table package assumes that data will always be represented by complete rows rather than individual cells. This makes a re-binding of [Shift + Home] necessary, to enforce the behaviour of selecting all rows starting from the current anchor to the first row.</td>
</tr>
<tr>
<td>Shift + End</td>
<td>The table package assumes that data will always be represented by complete rows rather than individual cells. This makes a re-binding of [Shift + End] necessary, to enforce the behaviour of selecting all rows starting form the current anchor to the last row.</td>
</tr>
<tr>
<td>Ctrl + Numpad +</td>
<td>Auto-resizes all columns such that the data fits optimally.</td>
</tr>
<tr>
<td>Ctrl + Shift + X</td>
<td>Opens the export dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + I</td>
<td>Opens the import dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + P</td>
<td>opens the table properties dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + V</td>
<td>Opens the print preview.</td>
</tr>
</tbody>
</table>
Focus in the peak table

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Deletes the current selection of peaks.</td>
</tr>
<tr>
<td>Enter</td>
<td>Zooms the spectrum pane in the current MDI window such that all selected objects are visible.</td>
</tr>
<tr>
<td>Ctrl + E</td>
<td>Starts the annotation editor of the currently anchored peak.</td>
</tr>
<tr>
<td>Ctrl + Shift + R</td>
<td>Opens the "rotate peaks" dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + S</td>
<td>Opens the "shift peaks" dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + D</td>
<td>Opens a window displaying detailed information of the current selection of peaks.</td>
</tr>
<tr>
<td>Ctrl + Shift + A</td>
<td>Opens the "annotate by reference" dialog.</td>
</tr>
</tbody>
</table>

Focus in the Browser

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpArrow</td>
<td>Select previous dataset</td>
</tr>
<tr>
<td>DownArrow</td>
<td>Select next dataset</td>
</tr>
<tr>
<td>Enter</td>
<td>dir/user/name/expno selected: expand node or collapse node, depending on the current state</td>
</tr>
<tr>
<td>Enter</td>
<td>procno selected: display this dataset</td>
</tr>
<tr>
<td>Ctrl+Enter</td>
<td>name/expno selected: display this dataset</td>
</tr>
<tr>
<td>Enter</td>
<td>multiple procnos selected: show in multiple display</td>
</tr>
<tr>
<td>Delete</td>
<td>one or more name/expno/procno nodes selected: delete these datasets</td>
</tr>
</tbody>
</table>
Focus anywhere in TOPSPIN

Scaling Data

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt+PageUp</td>
<td>Scale up the data by a factor of 2 (\times 2)</td>
</tr>
<tr>
<td>Alt+PageDown</td>
<td>Scale down the data by a factor 2 (\div 2)</td>
</tr>
<tr>
<td>Ctrl+Alt+PageUp</td>
<td>Scale up by a factor of 2, in all data windows</td>
</tr>
<tr>
<td>Ctrl+Alt+PageDown</td>
<td>Scale down by a factor of 2, in all data windows</td>
</tr>
<tr>
<td>Alt+Enter</td>
<td>Perform a vertical reset</td>
</tr>
<tr>
<td>Ctrl+Alt+Enter</td>
<td>Perform a vertical reset in all data windows</td>
</tr>
</tbody>
</table>

Zooming data

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt+Plus</td>
<td>Zoom in (.zi)</td>
</tr>
<tr>
<td>Alt-Minus</td>
<td>Zoom out (.zo)</td>
</tr>
<tr>
<td>Ctrl+Alt+Plus</td>
<td>Zoom in, in all data windows</td>
</tr>
<tr>
<td>Ctrl+Alt-Minus</td>
<td>Zoom out, in all data windows</td>
</tr>
</tbody>
</table>

Shifting Data

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt+UpArrow</td>
<td>Shift spectrum up (.su)</td>
</tr>
<tr>
<td>Alt+DownArrow</td>
<td>Shift spectrum down (.sd)</td>
</tr>
<tr>
<td>Alt+LeftArrow</td>
<td>Shift spectrum to the left (.sl)</td>
</tr>
<tr>
<td>Alt+RightArrow</td>
<td>Shift spectrum to the right (.sr)</td>
</tr>
<tr>
<td>Ctrl+Alt+UpArrow</td>
<td>Shift spectrum up, in all data windows</td>
</tr>
<tr>
<td>Ctrl+Alt+DownArrow</td>
<td>Shift spectrum down, in all data windows</td>
</tr>
<tr>
<td>Ctrl+Alt+LeftArrow</td>
<td>Shift spectrum to the left, in all data windows</td>
</tr>
<tr>
<td>Ctrl+Alt+RightArrow</td>
<td>Shift spectrum to the right, in all data windows</td>
</tr>
</tbody>
</table>
Focus in a Table (e.g. peaks, integrals, nuclei, solvents)

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete</td>
<td>Delete the selected entries</td>
</tr>
<tr>
<td>home</td>
<td>Select the first entry</td>
</tr>
<tr>
<td>end</td>
<td>Select the last entry</td>
</tr>
<tr>
<td>Shift+Home</td>
<td>Select the current and first entry and all in between</td>
</tr>
<tr>
<td>Shift+End</td>
<td>Select the current and last entry and all in between</td>
</tr>
<tr>
<td>DownArrow</td>
<td>Select next entry</td>
</tr>
<tr>
<td>UpArrow</td>
<td>Select previous entry</td>
</tr>
<tr>
<td>Ctrl+a</td>
<td>Select all entries</td>
</tr>
<tr>
<td>Ctrl+c</td>
<td>Copy the selected entries to the clipboard</td>
</tr>
<tr>
<td>Ctrl+z</td>
<td>Undo last action</td>
</tr>
<tr>
<td>Ctrl+y</td>
<td>Redo last undo action</td>
</tr>
</tbody>
</table>
Focus in a Plot Editor

<table>
<thead>
<tr>
<th>Key(s)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Open the Plot Editor Manual</td>
</tr>
<tr>
<td>F5</td>
<td>Refresh</td>
</tr>
<tr>
<td>Ctrl+F6</td>
<td>Display next layout</td>
</tr>
<tr>
<td>Ctrl+Shift+F6</td>
<td>Display previous layout</td>
</tr>
<tr>
<td>Ctrl+tab</td>
<td>Display next layout</td>
</tr>
<tr>
<td>delete</td>
<td>Delete the selected objects</td>
</tr>
<tr>
<td>Ctrl+a</td>
<td>Select all objects</td>
</tr>
<tr>
<td>Ctrl+i</td>
<td>Open TOPSPIN Interface</td>
</tr>
<tr>
<td>Ctrl+c</td>
<td>Copy the selected object from the Clipboard</td>
</tr>
<tr>
<td>Ctrl+l</td>
<td>Lower the selected object</td>
</tr>
<tr>
<td>Ctrl+s</td>
<td>Save the current layout</td>
</tr>
<tr>
<td>Ctrl+m</td>
<td>Unselect all objects</td>
</tr>
<tr>
<td>Ctrl+n</td>
<td>Open a new layout</td>
</tr>
<tr>
<td>Ctrl+o</td>
<td>Open an existing layout</td>
</tr>
<tr>
<td>Ctrl+p</td>
<td>Print the current layout</td>
</tr>
<tr>
<td>Ctrl+q</td>
<td>Close the Plot Editor window (Linux only)</td>
</tr>
<tr>
<td>Ctrl+r</td>
<td>Raise the selected object</td>
</tr>
<tr>
<td>Ctrl+t</td>
<td>Reset X and Y scaling of all marked objects</td>
</tr>
<tr>
<td>Ctrl+v</td>
<td>Paste the object from the Clipboard</td>
</tr>
<tr>
<td>Ctrl+w</td>
<td>Open the attributes dialog window.</td>
</tr>
<tr>
<td>Ctrl+x</td>
<td>Cut the selected object and place it on the Clipboard</td>
</tr>
<tr>
<td>Ctrl+z</td>
<td>Undo the last action</td>
</tr>
</tbody>
</table>

Note that the function of function keys can be changed as described in chapter 3.8.

3.7 Help in Topspin

TOPSPIN offers help in various ways like online manuals, command help and tooltips.

How to get a Panorama Tour

For a quick overview over TOPSPIN Interface, Acquisition, Processing, Analysis and Documentation:
How to Open Online Help documents

The online help manuals can be opened from the Help => Manuals submenu. For example, to open the manual that you are reading now:

To open the Avance Beginners Guide:

+ Click Help => Manuals => [Beginners Guides] <language>

To open the Processing Reference guide:

+ Click Help => Manuals => [Acquisition & Processing References] Proc. Commands and Parameters

Note that most manuals are stored in the directory:

<tshome>/prog/docu/english/xwinproc/pdf

The most recent versions can be downloaded from:

www.bruker-biospin.de

How to Get Tooltips

If you hold the cursor over a button of the toolbar, a tooltip will pop up. This is a short explanation of the buttons function. For example, if you hold the cursor over the interactive phase correction button, you will see the following:

The corresponding command line command, in this case .ph, is indicated between square brackets.

Note that the tooltip also appears in the status bar at the bottom of the TOPSPIN window.
How to Get Help on Individual Commands

To get help on an individual command, for example \texttt{ft}:

+ Enter \texttt{ft}?

or

+ Enter \texttt{help ft}

In both cases, the HTML page with a description of the command will be opened.

Note that some commands open a dialog box with a \texttt{Help} button. Clicking this button will show the same description as using the \texttt{help} command. For example, entering \texttt{re} and clicking the \texttt{Help} button in the appearing dialog box

opens the same HTML file as entering \texttt{help re} or \texttt{re}?

How to Use the Command Index

To open the TOPSPIN command index:

+ Enter \texttt{cmdindex}

or
3.8 User Defined Functions Keys

The default assignment of functions keys is described in chapter 3.6 and in the document:

+ Click Help => Manuals => [General] Control & Function Keys

You may assign your own commands to functions keys. Here is an example of how to do that:

1. Open the file `cmdtab_user.prop`, located in the subdirectory `userdefined` of the user properties directory (to locate this directory, enter `hist` and look for the entry "User properties directory="). The file `cmdtab_user.prop` is initially empty and can be filled with your own command definitions.

2. Insert e.g. the following lines into the file:

   ```
   _f3=$em
   _f3ctrl=$ft
   _f3alt=$pk
   _f5=$halt
   _f5ctrl=$reb
   _f5alt=$popt
   ```

3. Restart TOPSPIN

Now, when you hit the F3 key, the command `em` will be executed. In the same way, `Ctrl+F3`, `Alt+F3`, `F5`, `Ctrl+F5` and `Alt+F5` will execute the commands `ft`, `pk`, `halt`, `reb` and `popt`, respectively. You can assign any command, macro, AU program or Python program to any function keys. Only the keys `Alt+F4`, `F6`, `Ctrl+F6`, and `Alt+F6` are currently fixed. Their function cannot be changed.

3.9 How to Open Multiple TOPSPIN Interfaces

TOPSPIN allows you to open multiple User Interfaces. This is, for example,
useful to run an acquisition in one interface and process data in another. To open an addition interface, enter the command `newtop` on the command line or click **Window ⇒ New Topspin**. To open yet another interface, enter `newtop` in the first or in the second interface. The display in each interface is completely independent from the others. As such, you can display different datasets or different aspects of the same dataset, e.g. raw/processed, regions, scalings etc. When the dataset is (re)processed in one interface, its display is automatically updated in all TOPSPIN interfaces.

The command `exit` closes the current Topspin interface. Interfaces that were opened from this interface remain open. Entering `exit` in the last open TOPSPIN interface, finishes the entire TOPSPIN session. The position and geometry of each TOPSPIN interface is saved and restored after restart.
Chapter 4
Trouble Shooting

4.1 General Tips and Tricks

On a spectrometer, make sure the commands `cf` and `expinstall` have been executed once after installing TOPSPIN. `cf` must be executed again if your hardware configuration has changed. Sometimes, executing `cf` is useful in case of acquisition problems.

On a datastation, a default configuration is automatically done during the installation. No configuration commands are required. Only if you want to use AU programs, you must run `expinstall` once.

4.2 History, Log Files, Spooler Reports, Stack Trace

If you have a problem with TOPSPIN and want to contact Bruker, it is useful to have as much information as possible available. If TOPSPIN is still running, you can view log files with the commands `hist` and `ptrace`. If TOPSPIN hangs, you can create a stack trace by hitting `Ctrl+\` (Linux) or `Ctrl+Break` (Windows) in the TOPSPIN startup window.
4.2.1 TOPSPIN command-log

By default, the history (protocol) feature is switched on. This means all TOPSPIN commands will be protocolled and can be examined by entering `hist` on the command line.

If, for some reason, history is switched off, you can switch it on as follows:

1. Click **Options** => **Preferences**, click **Miscellaneous**
2. Check the entry "Record commands in protocol file"
3. Click **OK**.

4.2.2 TOPSPIN spooler report

TOPSPIN reports all queued, delayed and cron jobs in the so called spooler report file. The spooler report stores all jobs since TOPSPIN installation and can become very large. Therefore it should be cleaned from time to time.

To do that:

1. Enter the command `spooler`
2. Click **Tools** => **Show spooler report**
3. Mark the entries to be deleted
4. Right-click in the dialog and choose **Delete**.
5. Close the Spooler report.

Note that the spooler report can also be opened from Spooler field (if enabled) in the Acquisition Status Bar by right-clicking the word **Spooler** and choosing **Show spooler report**.

4.2.3 TOPSPIN command, dataserver and network log

A full protocol including not only TOPSPIN commands but also dataserver and network traffic is show by the command `ptrace`. This opens the fol-
Here TOPSPIN log messages from various log files are displayed time sorted.

Messages from different log files are shown in different colours. The color assignment and location of the files is shown in the lower part of the dialog window.

ptrace supports the following functions:
Search keywords

To search the displayed log files for a certain keyword, just enter it in the text bar at the top of the window and hit Enter.

Anchor specific entries

To anchor an entry:

double-click in the first column of the entry

The entry is marked with an X. Now you can use the < > buttons at the upper right of the window to go to the previous or next entry, respectively.

Add log files

By default, the procol.txt, history and dataserver log files are shown. To include additional log files to the ptrace list:

click File => Add, specify the file and click Open.

Note that most log files are stored in the directory:

<tshome>/prog/curdir/<user>

Save the log messages

To save log messages in a text file;

click File => Save and specify the output text file

4.2.4 Create a Stack Trace

If TOPSPIN hangs it can be useful to sent Bruker a stack trace about a possible cause. You can create a stack trace as follows.

1. Move the cursor into the TOPSPIN startup window.

2. Under Windows: hit Ctrl+Break (=Ctrl+Pause)
 Under Linux: hit Ctrl+\ (Control backslash)

3. Copy the appearing text into a text file.

4.2.5 Store complete log with => savelogs’

A complete set of TOPSPIN log files can be made automatically with the command save logs if the user assertively confirms.
For saving logfiles with the command savelogs do the following:

Under Windows:
- Click the *Bruker Utilities*<topspin version> icon on your desktop. An Explorer will be opened.
- Double-click *Miscellaneous*
- Execute the script *savelogs*

Under Linux:
- Open a shell.
- Type *savelogs*

All <tshome>/prog/curdir/<user>* files will be saved with savelogs. The stored files can be found under following pathname:

- Under Windows XP:
 <userhome>\AppData\Local Settings\Temp\TopSpinSupportFiles_<Support-Token><operating-system-user><year><month><day><hour><minute>.tar.gz
- Windows Vista:
 <userhome>\AppData\Local\Temp\TopSpinSupportFiles_<Support-Token><operating-system-user><year><month><day><hour><minute>.tar.gz
- Linux:
 /tmp/TopSpinSupportFiles_<Support-Token>_<operating-system-user><year><month><day><hour><minute>.tar.gz

For detailed information about saving all possible log files and about the upload to the Bruker FTP-server please refer to the *Processing Reference Command Manual*.

4.3 How to Show or Kill TOPSPIN processes

To show the currently running TOPSPIN processes, enter the command *show* or *kill* on the command line. A list of processes will appear showing the process command, dataset etc.
4.4 What to do if TOPSPIN hangs

If, for some reason, TOPSPIN hangs, please do the following.

Under Linux:
1. Open a Shell
2. Enter `<tshome>/prog/bin/script/killtopspin`
 where `<tshome>` is the TOPSPIN installation directory.

Under Windows:
1. Click Start => Programs => Bruker TOPSPIN => TOPSPIN 2.1 => Bruker Utilities 2.1 => Miscellaneous
2. In the appearing window:
 Click `killtopspin`.

Normally, this kill all TOPSPIN processes including `cpr`, `cprserver`, `dataserver` and `java`.

Fig. 4.2 shows a list with one process (command `xfb`). To kill a process, select it in the list and click the button **Kill**...

The command **show all** or **kill all** work like **show** and **kill**, except that they also show TOPSPIN system processes. Note that killing such processes may kill TOPSPIN.
4.5 How to Restart User Interface during Acquisition

If Topspin hangs up during a data acquisition, you can restart the user interface without disturbing the acquisition. To do that:

1. Open the file:

 `<tshome>/prog/curdir/<user>/history`

 where `<tshome>` is the TOPSPIN home directory and `<user>` is the user who started TOPSPIN. Look for the term 'Java Virtual Machine' and check its PID.

2. Open the Task Manager (Windows) or System Monitor (Linux)

3. Stop the Java(w).exe process with the PID found in the history file.

4. Open a Windows Command Prompt or Linux Shell

5. Go to the TOPSPIN Installation directory

6. Enter `topspin -client`
Chapter 5
Dataset Handling

5.1 The Topspin Browser

TOPSPIN offers a data browser from which you can browse, select, and open data.

The browser dialog offers the following tabs (see Fig. 5.1):
- **Browser** - data browser showing the data directory hierarchy
- **Last50** - list of the 50 last open datasets
- **Groups** - list of user defined groups of datasets
- **Alias** - list of user defined alias name

The browser appears at the left of the TOPSPIN window and can be shown/hidden with $\text{Ctrl}+d$ or by clicking the arrow buttons at the upper right of the browser.

The Browser tab

The browser shows data directory trees and allows you to expand/collapse their elements. Figure 5.1 shows the browser with three top level data directories and one dataset fully expanded.
The dimensionality of the data is indicated with different colors:

- black for 1D data
- blue for 2D data
- magenta for 3D data

Furthermore, the browser shows:

- the pulse program with the dataset EXPNO (e.g. 1 - hxcoqf in Fig. 5.1)
- the title with the dataset PROCNO (e.g. CH-CO Cyclosporin in Fig. 5.1)

Note that the displayed pulse program is the:

- status pulse program if an acquisition has been done (raw data exist)
- setup pulse program if no acquisition has been done (raw data do not exist)

The display of title and pulse program can be switched off (see Fig. 5.2).
The Last50 tab

Clicking the Last50 tab displays the list of the last 50 displayed datasets. Each dataset that you open, is automatically added to the current list. Fig. 5.3 shows a Last50 list with four datasets. As in the browser, different colors are used to indicate the data dimensionality.

Figure 5.2

Figure 5.3

+ Hit the **Enter** key to display the highlighted dataset in the current window
+ Double-click a dataset to display it in the current window.
Each line displays one dataset showing its name, expno, procno, top level directory and user.

The Groups tab

Clicking the Groups tab displays the list of user defined dataset groups. Here you can create, modify and display groups of datasets. Defining a group is useful is you work on projects where each project involves multiple datasets. It allows you to easily organizes your projects and access all data belonging to a certain project.

Note that a group not only defines the datasets involved, but also their data window positions and dimensions and the displayed region of each spectrum.
The entry **Update window bounds & displays regions**

The Alias tab

Clicking the **Alias** tab displays the list of user defined alias names for data-sets. Just right-click any entry to define, remove or interpret alias names.

![Figure 5.6](image)

- Define Alias For Data In Selected Window
- List Selected Aliases
- List All Aliases
- Remove Selected Aliases...
- List Available Alias Commands

=> define alias for data in selected window.
=> Show selected data name, expno etc.
=> Show all data names, expnos etc.
=> Remove selected aliases from list.
=> Show available alias commands.

Figure 5.7

How to Open the Browser in a separate window

The browser can be opened in a separate window as follows:

+ Click **Options** => **Preferences [set]**, click **Window settings** and check **Display dataset browser in a separate window**.

You must restart **TOPSPIN** for the change to take effect.

How to Put the Focus in the Browser

+ Hit the **F2** key

or

+ Click inside the browser
How to Select Folders in the Browser

To select a particular folder:

+ Left-click the folder button

or

+ Hit the arrow-up/down keys while the focus is in the browser

To select multiple folders:

+ Hold the Ctrl key and left-click multiple folders to select them

or

+ Hold the Shift key and left-click two folders to select these two and all in between.

How to Expand/Collapse a Folder in the Browser

To expand a collapsed folder:

+ Click the + button to the left of the folder button

or Double-click the folder button

or Hit the Right-Arrow key while the folder is highlighted

To fully expand a collapsed folder:

+ Right-click the DIR, NAME or EXPNO node and choose Fully Expand Selection

To collapse an expanded folder:

+ Click the - button to the left of the folder button

or Double-click the folder button

or Hit the Left-Arrow key while the folder is highlighted

How to Show/Hide Pulse program and Title in the browser

+ Right-click the data name folder button and choose
Show PULPROG /Title from the popup menu (see Fig. 5.8)

Figure 5.8

How to Show Dataset Dates in the Browser

+ Right-click the data name folder button and choose Show Date

The last modified date is shown to the right of the dataset NAME, whereas the acquisition date is shown to the right of the dataset EXPNO (see Fig. 5.9).
How to change the default Top Level Data Directory

By default, the browser shows the TOPSPIN installation directory with the Bruker example datasets. To suppress this feature click Options => Preferences [set], click Administration and uncheck Show TOPSPIN data examples directory in data browser.

How to Add, Remove or Interpret Alias Names

To add an alias name:

1. Click the Alias tab in the browser.
2. Right-click in the Alias table to open the popup menu (see Fig. 5.7). Click Define alias names for data in selected window.
3. Enter an alias name in the appearing dialog box and click OK. Note that alias names must begin with a letter.

To remove an alias name:

1. Right-click the alias name
2. Click Remove selected aliases... from the popup menu (see Fig. 5.7)

Furthermore, the popup menu offers entries to display the dataset, list its properties and print the full dataset specification.
5.2 Creating Data

How to Create a New Dataset

1. Click File => New [new, Ctrl+n]
 or
 Click the button in the upper toolbar.
2. Specify the dataset name, expno, procno, dir, and user in the appearing dialog box. If one or more datasets are open, the fields are initialized with the current dataset (see Fig. 5.10).
3. Click the down-arrow of the Solvent box and choose a solvent from the list, or type a solvent name.
4. Click the down-arrow of the Experiment box and choose a parameter set from the list, or type a parameter set name.
5. Type the dataset title in the TITLE box.
6. Click OK.
A dataset will be created and initialized with the parameters of the chosen experiment. No fid or spectrum are available yet. They can be created by data acquisition and data processing, respectively.

5.3 Opening Data

TOPSPIN allows you to open data in several ways, from the browser, the menu, the Windows Explorer or the command line. Furthermore, data can be opened:

- in an existing data window replacing the current dataset.
- in a data window which is in multiple display mode, being superimposed on the current spectra.
- in a new data window which becomes the active window.
Note that if a dataset is already displayed in one window and it is opened in a second existing window, it still replaces the dataset in the latter one. As a result, the same dataset will be displayed in two windows (see also command `reopen`).

How to Open Data Windows Cascaded

By default, a new data window appears maximized, filling the entire data field and covering possibly existing windows. You can, however, configure TOPSPIN to open new windows cascaded. This is convenient if you want to open several data windows and then select one.

To open new windows cascaded:

1. Click **Options** \Rightarrow **Preferences** \Rightarrow **set**
2. Click **Window Settings** in the left part of the dialog box.
 The right part of the dialog box shows the window settings (see Fig. 5.11).

![Figure 5.11](image)

3. Check *Open new internal windows 'cascaded' rather than 'max'*.
4. Optionally you can configure the cascaded windows by clicking the respective **Change** button. This will open the dialog box shown in Fig. 5.12.
5. Here you can specify the data window sizes and offsets as fractions of the maximum window sizes.

6. Click **OK** to close the dialog box.

How to Open Data from the Browser

In the browser:

+ Left-click-hold a data *name*, *expno* or *procno* and drag it into the data area. The data will be displayed in a new data window.

 or
 Left-click-hold a data *name*, *expno* or *procno* and drag it into an open data window. The data will replace the currently displayed data.

 or
 Left-click-hold a data *name*, *expno* or *procno* and drag it into an empty data window created with *Alt+w n*.

 or
 Left-click-hold a data *name*, *expno* or *procno* and drag it into a multiple display data window. The data will be superimposed on the currently displayed data.

 or
 Right-click a data *name*, *expno* or *procno* and choose **Display** from the popup menu; the data will be displayed in the current data win-
or Right-click a data name, expno or procno and choose Display in new window from the popup menu; the dataset will be displayed in a new data window.

or Hold the Ctrl key and left-click several datasets to select them or hold the Shift key and left-click two datasets to select these two and all in between. Then right-click one of the selected datasets and choose Display from the popup menu. A new window will be opened showing the selected datasets in multiple display mode. However, if the current window was already in multiple display mode, the selected spectra will be superimposed on the currently displayed spectra.

How to Automatically Select the first expno/procno of a dataset

If you open a dataset from the Browser by clicking a data name, there might be more than one expno and/or procno available. By default, TOPSPIN then opens a dialog box from which you can select the desired expno/procno combination (see Fig. 5.13). Clicking Open will open the selected dataset, whereas clicking Print will print the displayed dataset list.

You can, however configure TOPSPIN to automatically open the first available expno/procno combination. To do that:

1. Click Options => Preferences [set].
2. Click Miscellaneous in the left part of the dialog box.
3. Uncheck the item Display EXPNO/PROCNO list when opening data.
4. Click OK to close the dialog box.
Note that the command `rel` also opens the dialog shown in Fig. 5.13, showing the available EXPNO’s under the current dataset. Similarly, `repl` shows the available PROCNO’s under the current dataset EXPNO.

How to Open Data from the Topspin menu

1. To open a dataset:
 - Click the button in the upper toolbar.
 - or
 - Click **File** ⇒ **Open** [open, Ctrl+o] (see Fig. 5.14).
2. In the appearing dialog box (see Fig. 5.15)

 a) Select the option **Open NMR data stored in standard Bruker format**.

 b) Select the browser type **RE Dialog**.
c) Click **OK**.

3. In the appearing dialog box (see Fig. 5.16).

![Figure 5.16](image)

- a) Specify the dataset *name*, *expno* etc.
- b) Click **OK**.

Note that the dataset specification consists of the five variable parts of the data directory tree, in this case:

```
C:\bio\data\guest\nmr\exam1d_1H\1\pdata\1
```

The text boxes are initialized with the dataset in the current data window.

How to Open Data from the Explorer, Konqueror or Nautilus

You can open a dataset from the Windows Explorer as follows:

1. Open the Windows Explorer. You can do that in two different ways:
 - from the Windows *Start* button. Navigate to the data *name*, *expno* or *procno*.
 - or
by entering the command `expl` in TOPSPIN. The Explorer shows the contents of the current dataset procno directory. Navigate to the desired data name, expno or procno. `expl` can also be used with the argument `top` to open the TOPSPIN installation directory, `home` to open user home directory or with an absolute pathname to open that directory.

The command `expl spect` opens the Explorer in `<tshome>/conf/instr/ current instrument>`

The command `expl prop` opens the Explorer in the user’s properties directory

`User-HOME/topspin<name_of_PC>/prop`

By entering `expl <illegal argument>` all available options are shown.

2. Now you can open a dataset with:

 + **drag & drop**: click-hold a dataset name or any of its sub-folders or files and drag it into the TOPSPIN data area or data window.

 or

 + **copy & paste**: right-click a dataset and choose **copy** from the popup menu. In TOPSPIN, click **Edit => Paste [paste]** (see Fig. 5.17).

 ![Figure 5.17](image)

 Likewise, a dataset can be opened from the Windows window or Internet Browser.

How to Open Data from the Command Line

To open a dataset from the command line:

1. Enter `re`
2. Specify a dataset in the appearing dialog box (see Fig. 5.16).
3. Click **OK**

To open a new *procno* of the current dataset:

1. Enter **rep**
2. Specify a *procno* in the appearing dialog box.
3. Click **OK**

To open a dataset in a new window:

1. Enter **rew**
2. Specify a dataset in the appearing dialog box.
3. Click **OK**

To open a new *procno* of the current dataset in a new window:

1. Enter **repw**
2. Specify a *procno* in the appearing dialog box.
3. Click **OK**

To open a data browser and read a dataset from there:

1. Enter **reb**
2. Select a dataset from the appearing dialog box.
3. Click **Display**

Note that **re**, **rep** and **reb**:

- Replace the data in the currently selected data window.
- Open the data in a new window when they are used after typing `Alt+w n`
- Add the data in the currently selected window if this is in multiple display mode.

whereas **rew** and **repw**:

- Always open the dataset in a new window.

Topspin 2.0 and newer allows opening datasets stored in the following directories structures:

```
<mydata>/<dataname>/<expno>/pdata/<procno>
```

To do that
Dataset Handling

+ Enter `reb` on the command line, browse to the desired dataset and click the Display button

or

+ Open the Operating System File Browser, browse to the desired dataset and open it in Topspin with Copy & Paste or Drag & Drop.

Note that this will create a copy of the dataset in the standard Topspin datapath:

 `<tshome>/data/<user>/nmr/<dataname>/<expno>/pdata/<procno>`

where `<user>` is the current internal Topspin user. This copy can be processed, deleted or overwritten, even if the original dataset is write protected. The original data set is left unchanged.

How to Open Special Format Data

Apart from the standard Bruker data format, TOPSPIN is able to read and display various other formats. To do this:

+ Click File => Open `[open, Ctrl+o]`

select the option Open NMR data stored in special formats, select the desired file type (see Fig. 5.18) and click OK.

A dialog will appear which depends on the chosen file type. Just follow the instructions on the screen.

The following file types are supported:

• JCAMP-DX - Bruker TOPSPIN\(^1\) data stored in JCAMP-DX format
• Zipped TOPSPIN - Bruker TOPSPIN data stored in ZIP format
• WINNMR - Bruker WINNMR data
• A3000 - Bruker Aspect 3000 data
• VNMR - data acquired on a Varian spectrometer
• JNMR - data acquired on a Jeol spectrometer
• Felix - 1D data, FID or spectrum, which are stored in FELIX format.

1. Note that the TOPSPIN data format is identical to the XWIN-NMR data format.
Note that in all cases, the data are stored in a single data file which is unpacked/converted to standard Bruker format, i.e. to a data directory tree.

![Open - fromjdx](image)

Figure 5.18

How to Open a ZIP or JCAMP-DX file from the Windows Explorer

Data stored in ZIP or JCAMP-DX format can also be opened directly from the Windows Explorer. You can do that in one of the three following ways:

Drag & drop

1. Click-hold a file with the extension .dx or .zip and drag it into the TOPSPIN data area or data window.

Copy & paste

1. Right-click a file with the extension .dx or .zip and choose **copy** from the popup menu.
2. In TOPSPIN, click **Edit => Paste [paste]**

Associate JCAMP-DX files with a script

1. Create a file with the extension .cmd (e.g. jcamp.cmd) with a text editor.
2. Enter the following line:

   ```
   <tshome>\prog\bin\sendgui.cmd fromjdx %1
   ```
Dataset Handling

and store the file.

3. Open the Explorer and find the JCAMP-DX file.

4. Right-click the filename and choose Open with => Choose program => Browse

5. Find and select the script and click OK.

Now, every file with the extension .dx will automatically be opened in TOPSPIN when double clicked.

5.4 Saving/Copying Data

How to Save or Copy Data

You can save the current dataset as follows:

1. Click File => Save [Ctrl+s].

 This will open a dialog box (see Fig. 5.19).

 ![Figure 5.19](image)

 Figure 5.19

 2. Select an option and, if applicable, a file type.

 3. Click OK to execute the option.

 The options correspond to the following command line commands:

 • wrpa - copies the current data to a new data name or expno
• toccpn - convert experiment information to ccpn format
• tozip - convert a dataset of any dimension to ZIP format
• tojdx - convert a 1D or 2D dataset to JCAMP-DX format
• totxt - convert a 1D or 2D dataset text format
• wpar - write parameter set
• convdta - save digitally filtered data as analog filtered data
• wrp, wra, genfid, wmisc - write various files

How to Save an Entire Dataset
1. Click File => Save [Ctrl+s].
2. Select the option Copy dataset to a new destination [wpar] and click OK
3. Specify the dataset variables and click OK

How to Save Processed Data
1. Click File => Save [Ctrl+s].
2. Select the option Save other file
3. Select File type Processed data as new procno [wrp] and click OK
4. Enter a processing number (procno) and click OK

How to Save Acquisition Data
1. Click File => Save [Ctrl+s].
2. Select the option Save other file
3. Select File type Acqu. data as new expno [wra] and click OK
4. Enter a experiment number (expno) and click OK

How to Save Processed Data as Pseudo Raw Data
1. Click File => Save [Ctrl+s]
2. Select the option Save other file

1. For detailed information about the ccpn format please refer to www.ccpn.ac.uk
Dataset Handling

3. Select File type 1r/1i as fid [genfid] or 2rr/2ii as ser [genser]
4. Click OK
5. Enter a destination expno.
 (optionally, you can specify further data path specifications)
6. Click OK

5.5 Deleting Data

How to Delete a Specific Dataset
+ Right-click the data name, expno or procno in the browser, then click Delete...

A confirmation dialog will appear. Just click OK, if you are sure you want to delete. Note that TOPSPIN does not allow you to delete the last available dataset, e.g. the last procno under an expno, the last expno under a name or the last name under a user.

How to Delete Types of Datasets
To delete certain types of data like 1D raw data, 2D processed data etc.:
+ Click File => Delete...

or

+ Enter delete on the command line.

The dialog window shown in Fig. 5.20 will appear. Here you can select the data type and selection criteria.

5.6 Renaming Data

How to Rename a Specific Dataset
1. Right-click the data name, expno or procno in the browser, then click Rename...
2. In the appearing dialog:
 Enter the new name, expno or procno
3. Click OK

![Image of the dela window with various options and parameters]

Figure 5.20

1. Select a data type option
 For each option, the corresponding command appears in the title of the dialog box. These commands can also be used to delete data from the command line.

2. Specify the **Required parameters**
Note that you can use the wildcards:

- Asterix (*) for any character and any number of characters.
- Question mark (?) for any single character.

3. Click **OK**

A dialog box will appear showing the matching datasets. For example, if you select the option **An entire dataset ...**:

1. Select dataset entries for deletion (selected entries are highlighted).

To select multiple entries: click them holding the **Shift** or **Ctrl** key.

2. Click **OK** to delete the entire data directory.

If you select the option **Acquisition data** or **Processed data**, you can choose between deleting the data files only and deleting the entire `expno` or `procno` directory, respectively (see Fig. 5.21).

![Figure 5.21](image)
5.7 Searching/Finding Data

How to Find Data

You can find TOPSPIN data according to various criteria. To start searching, do the following:

1. Click **Edit => Find data** [*Ctrl+f | find*]
 to open the *Find data* window (see Fig. 5.22).

![Find data window](image)

Figure 5.22
2. Enter the search items in the upper part of the dialog. Note that:
 • There will be searched for items containing the specified string
 • Exact matching is performed for dataset variables, NAME, EXPNO, PROCNO and USER, if the checkboxes at the right are enabled.
 • The search is restricted to data created between the specified dates. Note that this refers to the acquisition date.
 • The **Reset mask** button allows you to reset the default criteria.

3. Select the **Data directories** to be searched in the lower part of the dialog. If no directories are selected, all will be searched.

4. Click **OK**
 to start the search. A list of data that fulfil the defined criteria will appear (see Fig. 5.23).

![Search result](image)

Figure 5.23

Note that on exiting **TOPSPIN**, the search criteria will be rest to default.

How to Display one of the Found Datasets

In the search result window (see Fig. 5.23):

1. Click one or more datasets to select them.
2. Click **Display**

to display the selected dataset(s) in the current data window. If multiple datasets are selected they are displayed in a new data window in multiple display mode.

The search result window offers a right-click context menu with various options (see Fig. 5.24).

<table>
<thead>
<tr>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display In New Window</td>
</tr>
<tr>
<td>Display As 2D Projection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sort This Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort + Reverse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Show Details</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Save selection in file...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add selection to dataset group...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files</td>
</tr>
</tbody>
</table>

| Process Selected Datasets...|

Figure 5.24

Display

Display the selected dataset(s) in the current data window. If multiple datasets are selected they are displayed in the same data window in multiple display mode. Equivalent to clicking the **Display** button or pressing **Enter**.

Display In New Window

Display the selected dataset(s) in a new window. If multiple datasets are selected they are displayed in the one new data window in multiple display mode.

Display As 2D Projection

Display the selected dataset as a projection of the current 2D dataset. A dialog will appear allowing you to choose F1-projection, F2-projection or both. If multiple datasets are selected, only the first one is considered. If the current dataset is not a 2D dataset, nothing happens.

Sort This Column
Sort the selected column in ascending order.

Sort + Reverse

Sort the selected column in descending order.

Save Selection in file...

Save the list of selected datasets in a text file. First opens a file dialog where you can select or specify a filename. The saved dataset list can, for example, be used for serial processing (command `serial`, see also *Process Selected Datasets* below).

Add selection to dataset group...

Selected datasets can be defined as dataset group.

File properties

Show main dataset parameters like *Dimension*, *Pulse program*, *Acquisition Date*, *Nuclei*, *Spectrometer frequency* and *Solvent*.

Files

Show the files in the processed data directory of the selected dataset.

Process Selected Datasets

Perform serial processing on the selected datasets. Opens a dialog where you can change or edit the dataset list and specify the command, macro or Python program to be executed (starts the command `serial`).

The **Close** button allows you to close the search result dialog.

5.8 Handling Data Files

How to List/Open the Current Dataset Files

A Bruker dataset is represented by a directory tree which contains files in the `expno` and `procno` subdirectories. These files contain the actual data, parameters, lists etc.

+ Right-click inside the data window and choose **Files** from the popup
menu.

If the spectrum is displayed, the files in the \textit{procno} subdirectory are shown. If the \textbf{Fid} is displayed, the files in the \textit{expno} subdirectory are shown.

+ Select a file and click \textbf{Open} to view its contents.

Note that this only makes sense for ascii files.

How to List/Open the current Dataset Files in the Windows Explorer

To list the current dataset files in the Windows Explorer:

1. Click \textbf{File} \Rightarrow \textbf{Run}...

2. Select \textbf{Open file explorer} [\texttt{exp1}] in the appearing dialog box (see Fig. 5.25)

3. Click \textbf{OK}

Alternatively, you can enter the command \texttt{exp1} on the command line. The Windows Explorer will be opened showing the processed data files (the files in the \textit{procno} directory) of the current dataset. Under Linux a Web browser like KDE Konqueror or Gnome Mozilla will be opened.

To open a file:

+ Double-click the file or right-click the folder icon and choose \textbf{Open}
If TOPSPIN data area contains no datasets, the `expl` command opens the Explorer showing the users home directory. When entered on the command line, `expl` can also be used with the argument `top` to open the TOPSPIN installation directory, `home` to open user home directory or with an absolute pathname to open that directory.
6.1 Processing Parameters

Processing parameters can be set/changed in three different ways:
- from the parameter editor: click the ProcPars tab or enter edp
- from the command line: e.g. enter si
- from a command dialog box: e.g. wm

How to Set a Processing Parameter from the Command Line

Enter the parameter name on the command line. For example to set the size:

1. Enter si
for 1D data, the following dialog box will appear:

![1D dialog box](Image)

for 2D data, the following dialog box will appear:

![2D dialog box](Image)

2. Specify the desired value(s), e.g. 32768 or 32k

3. Click OK

How to Set Processing Parameters from the Parameter Editor

To open the processing parameter editor:

- Click the **ProcPars** tab in the Tab bar of the data window.

 or

- Enter *edp* on the command line.
Parameter Handling

At the left of the parameter editor window you will see a list of parameter sections.

The processing parameter editor supports the following functions:

+ Collapse/expand a parameter section by clicking the ▼ button. Note that the section Window function in Fig. 6.1 is collapsed.

+ Collapse/expand all parameter sections by clicking the large ▼ button of the data window toolbar.

+ Enter (part of) a parameter name in the search field and click 🔍.

+ Click a parameter section, e.g. Phase at the left of the dialog box. The section becomes highlighted and the corresponding parameters will appear in the right part of the dialog box.

+ Click in a parameter field, e.g. PHC0, to set the parameter value.

+ Click the ⬤ button to the right of parameters like AUNMP to open a list of the corresponding programs/lists.
Right-click the button to the right of parameters like AUNMP to open the current program/list with an editor.

Hit the Tab key to jump to the next parameter field.

Hit Shift+Tab to jump to the previous parameter field.

Use the scroll bar at the right of the dialog box to move to parameters further up or down in the dialog box.

How to Undo the Last Processing Parameter Change

Click the following button:

Undo last parameter change.

How to Display Processing Status Parameters

Click the following button:

Show processing status parameters.

Note that the command \texttt{dpp} opens the parameter editor and automatically shows the status parameters.

How to Switch to Maxent parameters

Click the following button:

Switch to Maxent parameters.

How to Change Processed Data Dimensionality

Click the following button:

Change data dimensionality.

This changes the number of parameter columns and value of the processing parameter PPARMOD. TOPSPIN 2.1 and newer support data dimensionalities up to 8D.

The parameter editor does not allow you to modify status parameters. Processing status parameters reflect the status of the processed data and are used for further processing, display or plotting. Changing them can make the dataset inconsistent. In rare cases, however, it can be useful to
change a status parameter and TOPSPIN allows you to do that from the command line. If, for instance, you want to change the F1 status parameter MC2 of a 2D dataset, you have to enter:

\[s \text{ mc2} \]

Note that the command \(s \) is used for 1D, 2D and 3D dataset. TOPSPIN automatically recognizes the dimensionality of the data and displays the parameter in all relevant dimensions. Note that, for example, the parameter MC2 only exists in F1.

6.2 Acquisition Parameters

How to Set Acquisition Parameters

Acquisition parameters can be set/changed as follows:

- from the parameter editor: click the **AcquPars** tab or enter **eda**
- from the command line: e.g. enter **td**
- from the interactive parameter adjustment window (enter **gs**)

How to Set an Acquisition Parameter from the Command Line

Enter the parameter name on the command line. For example to set the time domain size:

1. Enter **td**

 for 1D data, the following dialog box will appear:
for 2D data, the following dialog box will appear:

![Dialog Box](image)

2. Specify the desired value(s), e.g. 65536 or 64k
3. Click OK

How to Set Acquisition Parameters from the Parameter Editor

To open the acquisition parameter editor:

- Click the **AcquPars** tab in the Tab bar of the data window.

 or

- Enter **eda** on the command line.

Fig. 6.2 shows an example of the acquisition parameter editor with the Experiment parameters displayed.
The processing parameter editor supports the following functions:

- Collapsible the section Width in Fig. 6.2 is collapsed.

- Collapse/expand all parameter sections by clicking the button of the data window toolbar.

- Enter (part of) a parameter name in the search field and click .

- Click a parameter section, e.g. Experiment at the left of the dialog box. The section becomes highlighted and the corresponding parameters will appear in the right part of the dialog box.

- Click in a parameter field, e.g. TD, to set the parameter value.

- Click the button to the right of parameters like PULPROG to open a list of the corresponding programs/lists.
Parameter Handling

+ Right-click the button to the right of parameters like PUL-PROG to open the current program/list with an editor.
+ Hit the Tab key to jump to the next parameter field.
+ Hit Shift+Tab to jump to the previous parameter field.
+ Use the scroll bar at the right of the dialog box to move to parameters further up or down in the dialog box.

How to Undo the Last Acquisition Parameter Change
+ Click the following button:

 Undo last acquisition parameter change.

How to Set Pulse Program Parameters
+ Click the following button:

 Show pulse program parameters [ased]

The button will change to . To make this the default setting:

 Click Options => Preferences, click Miscellaneous, check the entry "Show ased parameter selection with eda" and click OK.

How to Display Acquisition Status Parameters
+ Click the following button:

 Show acquisition status parameters.

Note that the command dpa opens the acquisition parameter editor and automatically shows the status parameters.

How to Get Probehead/Solvent dependent Parameters
+ Click the following button:

 Set probehead/solvent dependant parameters [getprosol].

Probehead and solvent dependant parameters can be set up with the command edprosol.
How to Change Acquisition Data Dimensionality

+ Click the following button:

 ![Change data dimensionality]

This changes the number of parameter columns and value of the acquisition parameter PARMODE.

How to Set Lock Parameters

Enter the command `edlock` and set the lock parameters in the appearing dialog box. For a detailed description of `edlock`, please refer to the Acquisition Reference manual or enter `edlock?` on the command line.

How to Set Routing Parameters

Enter the command `edasp` and set the routing parameters in the appearing dialog box. For a detailed description of `edasp`, please refer to the Acquisition Reference manual or enter `edasp?` on the command line.
Chapter 7
Data Processing

7.1 Interactive Processing

Interactive processing allows full control over the processing sequence. However, it requires detailed knowledge about the required parameters (see chapter 6.1) and commands. Therefore, it is only suitable for the advanced user. New or intermediate users are recommended to use the Processing Guide for semi-automatic processing (see chapter 7.2).

How to Process Data with Single Commands

Data can be processed by entering single commands on the command line. A typical 1D processing sequence would be:

- \texttt{em} : exponential window multiplication
- \texttt{ft} : Fourier transform
- \texttt{apk} : automatic phase correction
- \texttt{sref} : automatic calibration (referencing)
- \texttt{abs} : automatic baseline correction

This allows you full control over each individual processing step.
How to Process data with Composite Commands

Data can also be processed with so called composite commands. These are combinations of single processing commands. The following composite commands are available.

- **ef**: Exponential multiplication + Fourier transform
- **efp**: Exponential multiplication + Fourier transform + phase correction
- **fmc**: Fourier transform + magnitude calculation
- **fp**: Fourier transform + phase correction
- **gf**: Gaussian multiplication + Fourier transform
- **gfp**: Gaussian multiplication + Fourier transform + phase correction

They can be entered on the command line or clicked from the menu. For the latter option:

- Click **Processing** => **More transforms** => **Shortcuts**

Just like single commands, composite commands can be used in Macros, AU programs and Python programs.

7.2 Semi-automatic Processing

How to Use the 1D Processing Dialog

1D data processing often involves the same sequence of steps, which can easily be performed as follows:

1. Click **Processing** => **Process / Plot Current data**
2. In the appearing dialog (see Fig. 2.1):
 a) Enable the desired processing/plotting steps
 b) Set the parameter LB for exponential multiplication
 c) Select the desired LAYOUT for plotting.
 d) Click **OK**
How to Use the Processing Guide in *Automatic* mode

The Processing Guide in automatic mode guides you through the entire processing sequence of data selection, processing, printing and archiving with minimum user interaction.

1. Click **Processing** => **Data** => **Processing Guide**

 The Processing Guide window will appear as an integral part of the current data window (see Fig. 7.2).
2. In the Processing Guide window:
 a) Check **Automatic mode**
 b) Click **Open data set** and click **OK** to open a dataset manually, e.g. from the browser or click **Browse** to open the File Chooser.
c) Click **Window function** => **Fourier Transform** => etc.

Each processing step will be executed without user interaction.

How to Use the Processing Guide in Interactive mode

The Processing Guide in interactive mode guides you through the entire processing sequence of data selection, processing, printing and archiving requiring some user interaction.

1. **Click Processing => Data => Processing Guide**

 The Processing Guide window will appear as an integral part of the current data window.

2. In the Processing Guide window:
 a) Uncheck **Automatic mode**
 b) Click **Open data set** and click **OK** to open a dataset manually, e.g. from the browser or click **Browse** to open the File Chooser.
 c) Click **Window function** => **Fourier Transform** => etc.

 For each step a dialog box will appear where you can enter options, parameters etc. For details on these items, please refer to the corresponding commands in the Processing Reference Guide.

7.3 Processing Data with AU programs

Data processing can be performed by using AU programs. An AU program is actually a C-program which contains TOPSPIN commands (macros) and/or C-language statements. Various standard AU programs are delivered with TOPSPIN. A typical 1D processing AU program is **proc_1d**. A simplified version of this AU program is:

```
EF
APK
SREF
ABS
AUTO PLOT
QUIT
```

It executes the commands **ef**, **apk**, **sref**, **abs** and **autoplot**. To run this
AU program, just enter `proc_1d` on the command line \(^1\). You can create your own AU programs with the command `edau`. Note that an AU program must end with QUIT or QUITMSG("your message"), and that all statements must be specified in capital letters. For more information on AU programs, please refer to the AU programming manual:

+ Click **Help** => **Manuals** => [Programming Manuals] AU Programming

As an alternative to AU programs, you can also write Python programs, which allow you to use TOPSPIN commands, User Interface functions and Graphic functions. For more information:

+ Click **Help** => **Manuals** => [Programming Manuals] Python Programming

7.4 Serial Processing

TOPSPIN allows you to process a series of datasets using serial scripts. The dataset list and command(s) to be used can be easily setup from the TOPSPIN interface as follows. Enter the command `serial` on the command line. This will open the dialog window shown in Fig. 7.3.

![Serial Processing Dialog](image)

Figure 7.3

1. Before you can use any Bruker AU program, `expinstall` must have been executed once.
The same dialog window will be shown by using the menu bar Processing Serial Processing.

The dialog offers you the following options:

Browse for list

This buttons opens an Explorer in which you can locate an existing dataset list.

Find Datasets

You can for Datasets in all data directories marked in the appearing dialog window list (see Abbildung 7.4).

![Find data dialog window](image)

Figure 7.4

Edit List

This button will open a texteditor in which you can edit the current or
a new dataset list.

Next

After having defined the full dataset path and clicking next the following dialog will appear:

![Serial Processing - Define Command](image)

Figure 7.5

Continue with command definition, for example for Macros or Python programs. You can even Browse for Macros or Python programs. The
the following dialog will appear, dependent from your selection:

![Python Programs dialog]

After having chosen a Python program or a Macro, push the button execute for finishing serial processing command. In Figure 7.6...
Abbildung 7.7 you can see the look of the actual dialog.

Figure 7.7

After executing the serial processing, TopSpin 2.1 and newer displays following feedback-dialog:

Figure 7.8

Cancel

Leave this dialog.
Chapter 8
Printing/Exporting Data

8.1 Printing/plotting Data

How to Print/Plot from the Menu

The current data window can be printed as follows:

1. From the TOPSPIN menu:
 - Click the button in the upper toolbar
 or Click **File** => **Print**
 or Enter *print* or *Ctrl+p*

All these actions are equivalent; they open the Print dialog box (see Fig. 8.1).
2. In the Print dialog box:
 a) Select **Print active window** [**print**]
 b) Click **OK**

 Before printing starts, the operating system print dialog box will appear. Here you can, for example, select the printer name and the printer properties.

 The Print dialog box (see Fig. 8.1) contains two further options:

 - **Print with layout - start Plot Editor** [**plot**]
 If you select this option and click **OK**, the Plot Editor will be started. This option is equivalent to entering **plot** on the TOPSPIN command line.

 - **Print with layout - plot directly** [**autoplot**]
 Selecting this option activates the Plot Editor layout list box. Select
the desired layout and click **OK** to print. Standard layouts are delivered with TOPSPIN. They use the Windows default printer. User defined layouts use the printer defined in the Plot Editor. On a 1D dataset, only 1D layouts are listed, on a 2D dataset only 2D layouts are listed etc.

For the last two options, the following **Required Parameters** are available:

Use plot limits

- **from screen/ CY**
 The plot limits and maximum intensity are used as they are on the screen (processing parameter F1P, F2P and CY, respectively).

- **from Plot Editor Reset Actions**
 The plot limits and maximum intensity are set according to the Plot Editor Reset Actions (right-click inside the Plot Editor data field and choose **Automation** to set the Reset Actions).

- **as saved in Plot Editor**
 The plot limits and maximum intensity are set in the specified layout

Fill dataset list

- **from your default portfolio**
 The portfolio contains the current TOPSPIN dataset plus the data from the default Plot Editor portfolio.

- **from portfolio saved in dataset**
 The portfolio contains the current TOPSPIN dataset plus the data from the portfolio stored in this dataset.

Override Plotter saved in Plot Editor

If enabled, the plotter defined in the Plot Editor layout will be overridden by the plotter defined by the processing parameter CURPLOT.

How to Plot Data from the Processing guide

Printing/plotting data can be done from the Processing guide by clicking the **Plot/Print** button. If **Automatic mode** is checked, the active data window will be printed as it appears in the screen. If **Automatic mode** is unchecked, you will get the dialog box as displayed in Fig. 8.1.
How to Plot Data with the Plot Editor

The Plot Editor can be started from the Print dialog or from the command line (command `plot`). The Plot Editor allows you to create layouts and plot data. The complete functionality is described in the online manual, which can be opened as follows:

+ Click Help => Manuals => [Automation and Plotting] Plotting

How to Print the Integral list

1. Click the Integrals tab of the data window (see Fig. 8.2).
2. Enter `print` or `Ctrl+p` to print it.

![Figure 8.2](image)

How to Print the Peak list

1. Click the Peaks tab of the data window (see Fig. 8.3).
2. Enter `print` or `Ctrl+p`
8.2 Exporting Data

How to Copy data to Other Applications

Under MS Windows, you can easily copy the data window contents to other applications. To do that:

+ Click **Edit => Copy [copy]**.

This will copy the data window contents to:

- the clipboard. After that you can paste the clipboard contents to any Windows application.

On Windows systems the command **Edit => Copy [copy]** saves bmp-format, whereas the command **copy wmf** stores the old wmf-format.

On Linux systems the command **copy** stores png-files into a temporary file. The pathname of this file is copied to clipboard.

Please note:

Some programs, when importing spectra from the clipboard or metafile, do not display the contained information correctly. Particularly when you resize the imported graphics, sections of the text, the spectrum, or the axis sometimes have disappeared. Usually this is only a display problem. When you print the respective page, the representation is correct.
How to Store (Export) a Data Window as Graphics File

The clipboard and metafile formats are resizable vector formats. In addition to this, TOPSPIN allows you to save the contents of a data window in a graphics file of selectable type. Supported formats are .png, .jpg, .jpeg, .bmp, .emf, .wmf and .pdf. To do that:

1. Click File => Export.... [exportfile].
2. Navigate to the storage folder.
3. Enter the destination filename and extension.
4. Click Export

The resolution of such a screen dump equals the resolution of your screen. When you import a graphics file into another program, you may lose information when resizing the graphics.

Note that exporting a data window to PDF-format is only supported in TOPSPIN 2.1 and newer.

How to export projections of peak lists

Certain situations may require that the user wants to store a projection of a peak list (e.g. in order to evaluate an assignment in a 3D by verifying the annotated projected 2D-HSQC peak list on the respective 2D spectrum). Therefore it is useful and timesaving to use the option "export projections of peak lists".

In order to create such a peak list projection, the following steps must be executed:

1. Switch to the peaks tab of the data set from which the peak list projection should be used
2. Choose Export... from the peak table context menu (right-click)

![Figure 8.4](image)

3. Select the Project Peaks flag in the options panel of the appearing export dialogue.

 Please note that the active flag Project Peak enivokes the export of the entire projections peak list. If separate peaks should be exported, they must be selected in the peak table and the flag Export selected data must be set.

![Figure 8.5](image)
In the dialogue box the file format can be changed according to the required application.

4. Define the desired options in the upcoming projections dialogue window (i.e. target dimension and axis mapping).

![Figure 8.6](image)

The exported peak list is now of the specified dimension, where the axis are projected according to the specified axis mapping.
Chapter 9
1D Display

9.1 The 1D Data Window

The 1D data window consists of a data field, a title bar, a Tab bar and buttons. Fig. 9.1 shows a data window with a 1D spectrum.
9.2 Displaying one Dataset in Multiple windows

TOPSPIN allows you to display one dataset in multiple data windows. This is, for example, convenient to view various regions or various objects (spectrum, fid, parameters etc.) of the same dataset.

How to Reopen a Dataset in a Second/Third etc. Window

1. Select (activate) the desired dataset.
2. Click File => Reopen \[reopen\].

Multiple data windows with the same dataset are indicated with a number in square brackets, e.g. [1], in the title bar (see Fig. 9.2).
How to Rescale or Shift one Dataset in Multiple windows

Display buttons like \(\text{Button} \) and \(\text{Button} \) only work on the active data window. The same counts for the keys \(\text{Alt} + \text{PageUP} \) and \(\text{Alt} + \text{PageDown} \). However, when used with the control key, they work on all windows, for example:

+ Hit \(\text{Ctrl} + \text{Button} \), \(\text{Ctrl} + \text{Alt} + \text{PageUP} \) or \(\text{Ctrl} + \text{Alt} + \text{PageDown} \)
9.3 Changing the Display of a 1D Spectrum or FID

TOPSPIN offers buttons to scale or shift the spectrum vertically and horizontally.

How to Change the Vertical Scaling of the FID or Spectrum

+ Hit one of the following the keys:
 • Alt+PageUp: Increase the intensity by a factor of 2.
 • Alt+PageDown: Decrease the intensity by a factor of 2.
 • Alt+Enter: Reset the intensity.

or

+ Click one of the following buttons:
 + Increase the intensity by a factor of 2 [*2].
 + Increase the intensity by a factor of 8 [*8].
 + Decrease the intensity by a factor of 2 [\ /2].
 + Decrease the intensity by a factor of 8 [\ /8].
 + Reset the intensity [\ vr].

Alternatively, you can enter the corresponding commands as specified between square brackets [].

To manipulate all data windows, press the Ctrl key while clicking one of the above buttons.

How to Smoothly Change the Vertical Scaling of the FID/Spectrum

+ Click-hold the \ button and move the mouse

or

+ Turn the mouse wheel while the cursor is in the data window.
How to Change the Horizontal Scaling of the FID or Spectrum

+ Click-hold the button and move the mouse:

 ![Zoom in/out smoothly.](image)

 or

+ Click one of the following buttons:

 ![Zoom in to the center (spectrum) or left edge (FID) of the displayed region, increasing the horizontal scaling.](image)

 ![Zoom out from the center (spectrum) or left edge (FID) of the displayed region, decreasing horizontal scaling.](image)

 ![Perform an exact zoom via a dialog box.](image)

 a) Enter the coordinates of the desired region in the dialog box:

 ![Exact zoom dialog box](image)

 b) Click OK

 ![Undo last zoom.](image)

 ![Reset horizontal scaling to show the full spectrum.](image)

 ![Display the entire spectrum (baseline position and intensity scaling are adjusted if necessary).](image)

 ![Toggle interactive zoom mode. When switched off, interactive zooming only selects a horizontal region; baseline position and intensity scaling remain the same. When switched on, interactive zooming draws a box selecting the corresponding area.](image)

 ![Retain horizontal and vertical scaling when modifying dataset or](image)
changing to different dataset [\texttt{\textbackslash kee}]. Effects all data windows.
Alternatively, you can enter the corresponding commands as specified between square brackets [].

How to Shift a Spectral Region to the Left or to the Right

+ Click-hold the following button and move the mouse:

 \begin{itemize}
 \item [\leftrightarrow] Smoothly shift to left or right.
 \end{itemize}

 or

+ Click one of the following buttons:

 \begin{itemize}
 \item [\leftarrow] Shift to the left, half of the displayed region [\texttt{\textbackslash sl}].
 \item [\rightarrow] Shift to the right, half of the displayed region [\texttt{\textbackslash sr}].
 \item [\leftarrow] Shift to the extreme left edge of the spectrum [\texttt{\textbackslash sl0}].
 \item [\rightarrow] Shift to the extreme right edge of the spectrum [\texttt{\textbackslash sr0}].
 \end{itemize}

Alternatively, you can enter the corresponding commands as specified between square brackets [].

How to Shift the Spectrum Up or Down

To shift the FID or spectrum display up or down:

+ Click-hold the button and move the mouse:

 \begin{itemize}
 \item [\uparrow\downarrow] Smoothly shift the spectrum baseline up/down.
 \end{itemize}

 or

+ Click one of the following buttons:

 \begin{itemize}
 \item [\uparrow] Shift the spectrum baseline to the middle of the data field [\texttt{\textbackslash su}].
 \item [\downarrow] Shift the spectrum baseline to the bottom of the data field [\texttt{\textbackslash sd}].
 \end{itemize}

Alternatively, you can enter the corresponding commands as specified between square brackets [].
9.4 Using the Tab bar

Tabs of the data window can be activated by clicking them or by entering the corresponding commands, as specified between square brackets, on the command line. Note that command line commands always work on the currently selected (active) data window.

The Tab bar can be configured from the User Preference box (command set).

How to Display the Spectrum

+ Click the Spectrum tab [spec]

This displays the processed data. If these do not exist, the text 'No processed data available' appears.
How to Set Processing Parameters

+ Click the **ProcPars** tab \([\textit{edp}]\)

This opens the processing parameter editor (see also chapter 6.1). The following extra buttons are available:

- **Undo** last value change. Can be used to undo multiple changes.
- **M** Switch to Maxent parameters.
- **S** Status parameter display. The button turns green when activated \([\textit{dpp}]\).
- **123** Change processed dataset dimensionality (parameter PPARMOD).
- **▼** Collapse/expand all parameter sections.
- **Search** for specified parameter.

Changed parameters are automatically saved.
How to Set Acquisition Parameters

+ Click the **AcquPars** tab [eda]

This opens the acquisition parameter editor (see also chapter 6.1)). The following extra buttons are available:

- Undo last value change. Can be used to undo multiple changes.
- Show pulse program parameters [ased].
- Status parameter display. The button turns green when activated [dpa].
- Set probehead/solvent dependant parameters [getprosol].
- Set nuclei and routing [edasp]
- Change raw dataset dimensionality (parameter PARMODE).
- Collapse/expand all parameter sections.
- Search for specified parameter.

Changed parameters are automatically saved.

Note that the ... and **E** button to the right of the PULPROG parameter allow
you to show the pulse program list or edit the current pulse program, respectively.

How to Edit the Title

Click the **Title** tab [edit]

This allows you to edit the title that appears in the data window and on the plot.

- ![Save the title file under its current name.](image)
- ![Save the title file under a new name.](image)
- ![Reload the title file. Undo modifications since the last save.](image)
- ![Open the title file with the external editor (defined in User Preferences).](image)
How to Edit the Pulse Program

+ Click the PulsProg tab]

This allows you to edit the current pulse program. The following extra buttons are available here:

- Toggle status pulse program.
- Start the graphical pulse program display [edcpul].
- Show the pulse program in an external editor [nmrsim].
- Search for more info in the knowledge base

How to Display the Peak list

Click the Peaks tab
This displays the peak list. By default, the peak list shows the following entries:

- **Peak**: the peak number
- **$v(F1)$ [ppm]**: the chemical shift
- **Intensity [abs]**: the absolute peak intensity
- **Intensity [rel]**: the relative peak intensity
- **Half width [ppm]**: the peak width at half-height

Display the spectral region around a peak

+ Right-click the desired peak

this will open the popup menu shown in Fig. 9.4.
Here you can choose from the following options:

+ **Show spectrum** => **In correlated window**
 to open a new data window showing the full correlated spectrum

+ **Expand spectrum** => **In current window**
 to change the current data window to spectrum display, showing the region around the selected peak

+ **Expand spectrum** => **In correlated window**
 to open a new data window showing the region around the selected peak

+ **Edit Annotation**
 Edit the annotation of the current peak.

+ **Define as reference** => **Complete table**
 Define the entire peak table as a reference for annotation.

+ **Define as reference** => **Selection**
 Define the selected peaks as a reference for annotation.
Annotate by reference...
Create annotations according to the peaklist of the reference dataset. You will be prompted for the allowed variation in chemical shift.

Shift peaks...
Shift all peaks. You will be prompted for the number of ppm to be shifted.

Show detailed information
Show peak information, dataset information and peak picking parameters.

Export entries of the peak list
Entries of the peak list can easily be exported to Excel or any other program as follows:

1. For multiple peaks:
 Select the desired entries while pressing the Ctrl or Shift key
2. Right-click a peak entry to open the popup menu (see Fig. 9.4).
3. Click Export... to export the selected peaks.
4. This opens a dialog box where you can specify the filename and file type. For the latter you can choose from:
 • Auremol peaklist (.ml)
 • Comma Separated Values (.cvs)
 • Mixed Shape deconvolution peak list (peaklist)
 • TOPSPIN peak list (.xml)
 • XEASY peak list (.peaks)
 • XWIN-NMR peak list (.txt)

Important: Check the box in the lower-left corner to export the selected peaks only or uncheck it to export the entire list. Then click Export.

Delete/remove peaks from the peak list
To delete one peak:

+ Right-click the peak and choose Delete from the popup menu
To delete multiple peaks:
 1. Select the peaks while pressing the Ctrl or Shift key
 2. Right-click one of the peaks and choose Delete from the popup menu

To remove possible duplicate peaks:
 + Right-click any entry and choose Remove => Duplicate peaks

To remove possible peaks outside of the spectrum:
 + Right-click any entry and choose Remove => Peaks positioned outside of the spectrum

To remove solvent peaks:
 + Right-click any entry and choose Remove => Solvent Peaks

Copy the peak List
Instead of exporting entries of the peak list, they can also be copied to the Clipboard and pasted to another application like Excel. To do that:
 1. For multiple peaks:
 Select the desired entries while pressing the Ctrl or Shift key
 2. Right-click a peak entry to open the popup menu (see Fig. 9.4).
 3. Click Copy... to copy the selected peaks to the Clipboard.

Print the peak List
To print the peaklist:
 + Right-click a peak entry and choose Print...

or

 + Enter print on the command line

or

 + Press Ctrl-p

All actions will print the entire peaklist.

To preview a print:
Right-click a peak entry and choose **Print preview...**

Import a peak List

A peak list from a different dataset or program can be imported as follows:

1. Right-click an entry to open the popup menu (see Fig. 9.4).
2. Click **Import...**
3. In the appearing dialog box, navigate to the directory where the list resides and select the peak list, choosing from:
 - Auremol peaklist (.ml)
 - MULABEL peak list (labels)
 - TOPSPIN peak list (.xml)
 - XEASY peak list (.peaks)
 - XWIN-NMR peak list (.txt)

As such you can import a peak list from a different dataset or program or a previously exported list from the current dataset. Note that peak picking commands store the peak list in the processed data directory under the name `peak.xml` (TOPSPIN 2.1 or newer) or `peak.txt` (XWIN-NMR and TOPSPIN 2.0 or older).

Shortcuts

Double-click a peak: zoom into spectrum, i.e. show region around that peak.

Enter key: zoom into spectrum, i.e. show region around selected peak(s).

Delete key: delete the selected peak(s) from the peak list.

Ctrl+c: copy selected peaks to the Clipboard.

Ctrl+a: select all peaks.

Home: select the first peak.

End: select the last peak.

Shift+Home: select current and first peak and all in between.

Shift+End: select current and last peak and all in between.

Note that these keys only work when the cursor focus is in the data window.

Table properties:

Various properties of the peak table can be configured. To do that:

1. Right-click an entry to open the popup menu (see Fig. 9.4).
2. Click **Table properties**...
3. In the appearing dialog box, with 3 tabs:
 - **Column**
 Allows you to select the columns to be displayed, set the column width and the number of fraction digits. Furthermore, you can switch on/off scientific notation of values for each column individually.
 - **Colours**
 Allows you to set various colours of the table.
 - **Spacings**
 Allows you to set various spacings of the table.
When you move the cursor over the peak list, the active peak will, by default, be highlighted in blue (see peak 3 in Fig. 9.6). If the correlated spectrum is also displayed, a vertical line moves along, showing corresponding position in the spectrum (see Fig. 9.6)
As soon as you click a peak, it is selected and, by default, displayed in red (see peak 1 in Fig. 9.6). Note that this peak remains selected, i.e. is used by Enter and Delete, until a different peak is selected.

To extend the peak list, for example with Regions, Type and Index entries, right-click any part of the header bar.

To sort the peaks according to peak number, ppm value or intensity, click the header of the respective entry.

Peaks are only available if peak picking has been done (command pp). The peak list can be printed with print [Ctrl+p]. List items can be selected with the mouse, copied with Ctrl+c and pasted to other applications, e.g. a text editor.
How to Display the Integral list

+ Click the **Integrals** tab \{li, lipp, lippf\}

This displays the integral list (upper part of Fig. 9.7). By default, this shows the following items:

* **Object**: the integral number

* **Integral [abs]**: the absolute integral value

* **Integral [rel]**: the relative integral value

* **Peaks**: the number of peaks within the integral range

* **Range (F1) from**: the left edge of the integral range

Figure 9.7
Range (F1) to: the right edge of the integral range

Please note the difference between the following items:

- **selected integral**: the entry that has been clicked last (Integral 3 in Fig. 9.7). If you right-click an entry, it is selected and you can execute one of the commands from the popup menu (see Fig. 9.8). The keys **Enter** and **Delete** work on the selected entry.

- **active integral**: the entry on which the cursor resides (Integral 1 in Fig. 9.7). The active integral is also marked in the correlated spectrum by a black vertical line (see lower part of Fig. 9.7 and description below). When you move the cursor over the integral list, the vertical line in the correlated spectrum moves along with it and vice versa.

Note that the colours of the selected and active integral can be set in the table properties (see below).

Display the spectral region around an integral

To display the spectral region around a particular integral:

+ Right-click the desired integral
This will open the popup menu shown in Fig. 9.8.

![Figure 9.8]

Here you can choose from the following options:

+ **Show spectrum** => **In correlated spectrum**
 to open a new data window showing the full correlated spectrum

+ **Expand spectrum** => **In current window**
 to change the current data window to spectrum display, showing the region around the selected integral

+ **Expand spectrum** => **In correlated window**
 to open a new data window showing the region around the selected integral (lower part of Fig. 9.7)

Note that clicking the marked entry in the right-click popup menu is equivalent to pressing the *Enter* key.

Export/Import Entries of the Integral List

Entries of the integral list can easily be exported to Excel or any other program as follows:

1. For multiple integrals:
Select the desired entries while pressing the Ctrl or Shift key

2. Right-click an entry to open the popup menu (see Fig. 9.8)

3. Click one of the following menu items:

 • **Copy**
 Copy the selected integral(s) entry to the Clipboard. Equivalent to clicking Edit => Copy or hitting Ctrl+c. Copied integrals can easily be pasted in any other application such as Excel.

 • **Export...**
 Export selected integrals. Check the box in the lower-left corner to export the selected integrals only or uncheck it to export the entire list. Then click Export.

Calibrate Integrals to Compare Spectra

Integrals from the current and other spectra can be calibrated with respect to a reference integral. To do that:

1. Right-click the reference integral and choose Define as reference from the popup menu. This will determine the calibration constant.

2. Right-click any integral and choose Calibrate by reference
 This will divide all integrals by the calibration constant, setting the reference integral to 1.0.

Now you can read any other spectrum, and calibrate its integrals with respect to the reference integral defined above. To do that:

1. Read the spectrum

2. Enter int to define the integral ranges (if this has not been done yet)

3. Click the Integrals tab

4. Right-click any integral in the list and choose Calibrate by reference from the popup menu.

Note that the calibration constant is lost when TOPSPIN is restarted.

Display the integral list with peaks

The integral list in Fig. 9.7 shows only integrals. However, if peak picking has been done, the integral list also shows the peaks within each integral range (see Fig. 9.9).
Note that the integral entries can be collapsed, (hiding the peaks) or expanded (showing the peaks). As soon as one or more integrals entries are expanded, two extra columns appear showing:

- $\nu(F1)$ [ppm]: the chemical shift of the peak
- Intensity: the peak intensity

Depending on whether or not integrals are expanded, the right-click popup menu contains the following extra items:

- **Expand**
 Expand the current integral showing all peaks within it.
• **Expand all**
 Expand all integrals showing all peaks within them.

• **Collapse all**
 Collapse all integrals hiding all peaks within them.

In addition to the integral entry, an individual peak within an integral can be activated (by placing the cursor on it) or selected (by clicking it). In Fig. 9.9, peak 7 is selected and the correlated spectrum is displayed. Peak 5 is active which is also shown by the vertical line in the correlated spectrum.

Delete an Integral from the Integral List

To delete one integral:

 + Right-click the integral and choose **Delete** from the popup menu

To delete multiple integrals:

1. Select the integrals while pressing the **Ctrl** or **Shift** key
2. Right-click one of the integrals and choose **Delete** from the popup menu

Note that these keys only work when the cursor focus is in the data window.

Table properties:

Various properties of the integral table can be configured. To do that:

1. Right-click an entry to open the popup menu (see Fig. 9.10).
2. Click **Table properties...**
3. In the appearing dialog box, with 3 tabs:

4. **Column**
 Allows you to select the columns to be displayed, set the column
 • width and the number of fraction digits. Furthermore, you can switch on/off scientific notation of values for each individual column.

 • **Colours**
 Allows you to set various colours of the table.
• **Spacings**
 Allows you to set various spacings of the table

5.

![Table properties dialog box](image)

Figure 9.10

Shortcuts

Enter key: zoom into spectrum, i.e. show region around selected integral(s))

Delete key: delete the selected integral(s) from the integral list
1D Display

Ctrl+c: copy selected integrals to the Clipboard.

Ctrl+a: select all integrals.

Home: select the first integral

End: select the last integral

Shift+Home: select current and first integral and all in between

Shift+End: select current and last integral and all in between

Double-clicking an integral will show the peaks within the integral region if they exist. If they do not exist, it will zoom into spectrum showing the integral region.

Note that these keys only work when the cursor focus is in the data window.
How to view Sample Information

+ Click the Sample tab \[edsam\]

Figure 9.11

This table can be used to fill out any sample information you want to store with the dataset. The table can easily be modified or extended with the following functions:

- To select an item: double-click it!
- Save the sample information table with the dataset.
- Save the sample information table as default.
- Reload the original table discarding any changes
- Add a new item to the table. You will be prompted for an identification name and the desired number of lines
- Remove the selected item from the table
- Move the selected item one place up in the table
How to Open the Jmol Molecule Structure Viewer

+ Click the Structure tab [jmol]:

![Image](image.png)

Figure 9.12

opens the Jmol molecule structure viewer. TOPSPIN 2.1 contains Jmol version 10. This has the following features:

- The viewer displays the structure file that resides in the expno of the current dataset. If this does not exist, the structure file defined by the acquisition parameter CHEMSTR is displayed. CHEMSTR can define a full pathname or a filename. In the latter case, the file is searched for in the directory defined in the User Preferences. To set this directory, click Options => Preferences, select Directory path names, enter a directory and click OK. If no structure file is found, you can open one by clicking File => Open in the Molecule Viewer.

- The following structure file types are supported: .xyz, .mol, .pdb, .cml, .out, .mmlgp, .res, .cif, .gpr, .hin, .nwo.
• Secondary structure elements of proteins (backbone, cartoons, ribbons, ...) can be displayed in selectable sizes and colors.

• Mouse button effects:
 Rotate a molecule around the x- and y-axis by pressing the left mouse button, and moving the mouse left/right or up/down, respectively.
 Rotate a molecule around the z-axis by pressing the middle mouse button and moving the mouse left/right.
 Zoom in or out a molecule by pressing the middle mouse button, and moving the mouse up or down.

• RASmol command scripts are supported. To send a RASmol command to the currently displayed molecule enter:
 \texttt{+jmol <RASmol command>}

Here are some example:
 \texttt{+jmol zoom 400}
 \texttt{+jmol ribbon 200}
 \texttt{+jmol color ribbon yellow}

You may create TOPSPIN macros containing RASmol commands. Just enter \texttt{edmac} on the TOPSPIN command line and insert the RASmol commands in the appearing editor. Here is an example:
 \texttt{jmol load /mystructures/alphahelix.pdb} # load a structure
 \texttt{jmol backbone 0.7} # display its backbone with 0.7 Angstrom size
 \texttt{jmol color backbone yellow} # change backbone color
 \texttt{jmol background green} # change background color
 \texttt{jmol zoom 200} # zoom structure

The available RASmol commands are described in the \texttt{Jmol} Help menu.

• Multiple molecules (or multiple aspects of one molecule) can be displayed simultaneously. To do that just open multiple data sets or open the same dataset in multiple data windows and click on the \texttt{Structure} Tab in each window.
1D Display

How to Display the FID

+ Click the Fid tab \([f] \)

![Fid tab example](image)

displays the raw data. If these do not exist, the text 'No raw data available' appears. The following additional buttons appear at the right of the lower toolbar:

- Show FID in shuffled mode
- Show FID in unshuffled mode

If you open a new dataset, the Spectrum tab is activated, no matter which tab was selected before. If you enter any interactive mode, for example phase correction mode, the Tab bar is replaced by a toolbar for that mode.

9.5 1D Display Options

How to Toggle between Hertz and ppm Axis Units

Click the following toggle button in the upper toolbar:

![Toggle button example](image)

Toggle between Hz and ppm axis units \([h]\)

How to Switch on/off the Spectrum Overview display

The spectrum overview shows the entire spectrum at the top of the data window. It is useful when only a certain region of the spectrum is dis-
played. In the overview, the displayed region is marked as a green area. To switch on the spectrum overview, click the following toggle button in the upper toolbar:

Switch the spectrum overview display on/off [. ov]

To shift the displayed region, simply click-hold the green area in the overview spectrum and move the mouse (see Fig. 9.13).

How to Switch Y-axis Display

Click the following toggle button in the upper toolbar:

Switch the y-axis display between abs/rel/off [. y]

Fig. 9.13 shows a data window with the spectrum overview on, ppm axis units, and absolute y-axis display.

![Figure 9.13](image)

9.6 Show Display Properties/Regions/Files

If you right-click inside the data window, the following popup menu will
Figure 9.14

If you choose Display Properties..., a dialog box (see Fig. 9.14) will appear.
Here you can check or uncheck the spectrum components that you want to be displayed in the data window.

Note that the **Display Properties...** dialog box can also be opened from the **View** menu.

How to Superimpose the Cursor Information

To superimpose the cursor information on the spectrum:
1. Right-click in the data window and choose **Display Properties** [.dopt]
2. Check **Cursor information** in the appearing dialog box and click **OK**

How to Superimpose the Title on the Spectrum

1. Right-click in the data window and choose **Display Properties...** [.dopt]
2. Check **Title** in the appearing dialog box and click **OK**

How to Superimpose the main Status Parameters on the Spectrum

1. Right-click in the data window and choose **Display Properties...** [.dopt]
2. Check **Status parameters** in the appearing dialog box and click **OK**

How to Superimpose the Integral Trails/Labels on the Spectrum

1. Right-click in the data window and choose **Display Properties...** [.dopt]
2. Check **Integrals** and, if desired, **Integral labels** in the appearing dialog box
3. Click **OK**

If no integrals appear, the integral regions have not been determined yet. This can be done with the **int** command.

How to Superimpose Peak Labels on the Spectrum

1. Right-click in the data window and choose **Display Properties...** [.dopt]
2. Check **Peak labels** in the appearing dialog box and click **OK**

If no peak labels appear, peak picking has not been done yet. This can be done with the **pp** command.

1. These are the status parameters that also appear on the plot.
How to Show Peak Annotations on the Spectrum
1. Right-click in the data window and choose Display Properties...
 [.dopt]
2. Check Peak labels and Peak Annotations in the appearing dialog box and click OK

Peak annotations appear, on peaks for which annotations have been defined, instead of regular peak labels showing chemical shift values. If no peak labels or annotations appear, peak picking has not been done yet. This can be done with the pp command.

How to Show Individual Data Points of the Spectrum
1. Right-click in the data window and choose Display Properties...
 [.dopt]
2. Check Show data points in the appearing dialog box and click OK
3. Expand the spectral region where you want to see individual points.

How to Superimpose the Electronic Signature on the Spectrum
1. Right-click in the data window and choose Display Properties...
 [.dopt]
2. Check Electronic Signature in the appearing dialog box and click OK

The electronic signature, entered with esign, will appear below the title.

How to Display the Main Dataset Properties
1. Right-click inside the data window and choose File Properties

An information box as displayed in Fig. 9.15 will appear.
Note that this is status information which cannot be changed.

How to Display a List of Files of a Dataset

+ Right-click inside the data window choose **Files**

Fig. 9.16 shows the file list when the **Fid** tab is active, i.e. when the raw data are displayed. It is the contents of the `expno` directory.
Fig. 9.17 shows the file list that appears when the **Spectrum** tab is active, i.e. when the processed data are displayed. It is the contents of the **procno** directory.
The contents of any file in the list can be displayed as follows:

1. Select a filename (it will be highlighted)
2. Click Open

Note that this only makes sense for ascii files, e.g. acqu*, proc* or files with the extension .txt.

Dataset files can also be displayed/opened with the command expl. This opens the Windows Explorer, or under Linux, the Konqueror or Mozilla, showing the contents of the procno directory.

Figure 9.17
9.7 Saving Display Region

The currently displayed spectral region can be stored as follows:

+ Right-click in the data window and choose **Save Display Region To...**

This will open the dialog box shown in Fig. 9.18.

![Save display region to ...](image)

Figure 9.18

Here the following options are available:

- **Parameters F1/2** \([dpl] \)

 to save the displayed region for restoring the display later. The region is stored in the parameters F1P and F2P.

To restore the saved region, right-click in the data window and choose:

 Restore Display Region from Params F1/2

- **Parameters ABSF1/2**

 to save the displayed region for baseline correction (command \texttt{absf}) or phase correction (command \texttt{apkf}). The region is stored in the processing parameters ABSF1 and ABSF2.

- **Parameters STSR/STSI**

 to save the displayed region for Strip FT (commands like \texttt{ft} and \texttt{trf}).
The region is stored in the processing parameters STSR and STSI.

- **Parameters NOISF1/2**

 to save the displayed region as the signal region for Signal to Noise calculation (command *sino*). The region is stored in the processing parameters SIGF1 and SIGF2.

- **Parameters SIGF1/2**

 to save the displayed region as the noise region for Signal to Noise calculation (command *sino*). The region is stored in the processing parameters NOISF1 and NOISF2.

- **A text file for use with other programs**

 to save the displayed region in a text file. This file can be viewed with any editor or used by external programs.

9.8 Synchronize Visible Region of all Data Windows

The visible region of all data windows can be synchronized as follows.

+ **Zoom in or out one dataset while holding the Ctrl key**

 or

+ **Zoom in or out one dataset and then enter the .sync command**
Chapter 10

2D Display

10.1 The 2D Data Window

The 2D data window consists of a data field, a title bar, a Tab bar and buttons.

Fig. 10.1 shows a data window with a 2D spectrum.
10.2 Changing the Display of a 2D spectrum

TOPSPIN offers various buttons to scale or shift a 2D spectrum both vertically and horizontally.

How to Change the Intensity Scaling (contour levels)

+ Click the button:

 ![Change the intensity scaling (contour levels)](edlev)

or

+ Hit one of the keys:

 • Alt+PageUp: Increase the intensity by a factor of 2.
 • Alt+PageDown: Decrease the intensity by a factor of 2.
 • Alt+Enter: Reset the intensity.

or
Click one of the following buttons:

- Increase the intensity (decrease the levels) by 2 \([\times 2]\).
- Increase the intensity (decrease the levels) by 8 \([\times 8]\).
- Decrease the intensity (increase the levels) by 2 \([/2]\).
- Decrease the intensity (increase the levels) by 8 \([/8]\).

Alternatively, you can enter the corresponding commands as specified between square brackets [].

To manipulate all data windows, press the Ctrl key while clicking one of the above buttons.

How to Smoothly Change the Vertical Scaling (contour levels)

To change levels, multiplying all levels with the same factor:

- Click-hold the button and move the mouse.

or

- Turn the mouse wheel while the cursor is in the data window.

To change the level distance (increment), leaving the base level the same:

- Click-hold the button and move the mouse.

How to Display a Contour Levels Bar in the Data Window

1. Right-click in the data window and choose Display Properties... \([.dopt]\)
2. Check Contour Levels Bar in the appearing dialog box and click OK (see Fig. 10.2).
How to Switch on/off Square 2D layout

Right-click inside the data field and click **Square Layout On/Off**

The F2 scaling will be adjusted to reach a square display.
How to Zoom a 2D spectrum in/out

+ Click one of the following buttons:

- Zoom in to the center (spectrum) or left edge (FID) of the displayed region, increasing the horizontal scaling. [.zi]

- Zoom out from the center (spectrum) or left edge (FID) of the displayed region, decreasing horizontal scaling) [.zo]

- Perform an exact zoom via a dialog box [.zx].

![Figure 10.4](image)

Figure 10.4

a) Enter the coordinates of the desired region in the dialog box.

b) Click OK

- Undo last zoom [.zl].

- Show full spectral width in F2 [.f2r].

- Show full spectral width in F1 [.f1r].

- Show full spectrum [.all].

- Retain horizontal and vertical scaling when modifying dataset or changing to different dataset. Effects all data windows [.keep].

Alternatively, you can enter the corresponding commands as specified between square brackets [].
How to Shift a Spectral Region in the F2 direction (left/right)
+ Click one of the following buttons:

 ← Shift to the left, half of the displayed region [.sl].
 → Shift to the right, half of the displayed region [.sr].

or
+ Click-hold the button and move the mouse:

 ✤ Smoothly shift in any direction.

Alternatively, you can enter the corresponding commands as specified between square brackets [].

How to Shift a Spectral Region in the F1 direction (up/down)
+ Click one of the following buttons:

 ↑ Shift the spectrum up, half of the displayed region [.su].
 ↓ Shift the spectrum down, half of the displayed region [.sd].

or
+ Click-hold the button and move the mouse:

 ✤ Smoothly shift up/down and left/right.

Alternatively, you can enter the corresponding commands as specified between square brackets [].

10.3 Show Display Properties/Regions/Files

If you right-click inside the data window, the popup menu shown in Fig.
10.5 will appear.

![Display Properties](image)

Figure 10.5

Here you can select various display properties, region setting and file properties. If you choose **Display Properties...**, a dialog box (see Fig. 10.6) will appear.
Here you can set various display options including parameters, integrals, peaks, contours, projections and electronic signature. The number of displayed digits for the integral and peak labels can be set in the User Preferences (click Options => Preferences => Spectrum).

Figure 10.6
10.4 Using the Tab bar

The 2D data window is a tabbed pane. This means its contents depends on the currently active tab in the Tab bar. The individual tabs are basically the same as for 1D display (see chapter 9.4). There are, however, some differences, which are discussed below.

How to Set Processing Parameters

+ Click the ProcPars tab [edp]

The 2D processing parameter editor contains a column for each of the two dimensions F2 and F1 (see Fig. 10.7). Note that not all parameters exist in both dimensions.

![Figure 10.7](image)

How to Set Acquisition Parameters

+ Click the AcquPars tab [eda]

The 2D acquisition parameter editor contains a column for each of the two dimensions F2 and F1 (see Fig. 10.8). Note that not all parameters
exist in both dimensions.

Figure 10.8

How to Display the Peak list
+ Click the Peaks tab

Figure 10.9
This displays list of peaks if these have been calculated (command pp).
The list is basically the same as for 1D spectra. The only difference is that there are two columns for the two directions:

- $v(F2)$ [ppm]: the chemical shift in the F2 direction
- $v(F1)$ [ppm]: the chemical shift in the F1 direction

To specify or edit an annotation, click inside the *Annotation* field and enter a character string. The peak annotations are shown in the correlated spectrum (see Fig. 10.10)

![Figure 10.10](image)

How to Display the Integral list

+ Click the *Integrals* tab
This displays the list of integrals if these have been calculated (command \textit{int}). The list is basically the same as for 1D spectra. The only difference is that, when peaks are shown, there are two columns for the chemical shift:

\begin{itemize}
 \item $\nu(F2)$ [ppm]: the chemical shift in the F2 direction
 \item $\nu(F1)$ [ppm]: the chemical shift in the F1 direction
\end{itemize}

Furthermore, a stored or exported 2D integral list can be imported as follows:

1. Right-click an entry to open the popup menu
2. Click \textbf{Import}...
3. In the appearing dialog box, navigate to the directory where the list resides and select the integral list.

As such you can import an integral list from a different dataset or a previously exported list from the current dataset. Note that integration commands store the integral list in the processed data directory under the name \textit{integrals.txt}. Exported integrals are stored in the files <\textit{name}>.txt and <\textit{name}>.reg, where <\textit{name}> is the name specified by the user.
How to Display the FID

+ Click the Fid tab [fid]

2D raw data consist of a series of FIDs which are displayed in a row. Individual FIDs can be displayed by zooming in. To do that, click repeatedly. Now you can shift and zoom in/out the data to display different FIDs (see Fig. 10.12).

![Figure 10.12](image)

10.5 2D Display Options

How to Switch between Hertz and ppm Axis Units in F2 and F1

+ Click the following multi-state button in the upper toolbar:

 Switch between Hz and ppm axis units in F2 and F1 [.hz]

How to Switch on/off the Spectrum Overview display

+ Click the following toggle button in the upper toolbar:

 Switch the spectrum overview display on/off [.ov]

With the spectrum overview on, the data window will, for example, look like
How to Switch on/off the Projection display

+ Click the following toggle button in the upper toolbar:

Switch the projection display on/off [.pr]

With the projections displayed, a 2D dataset looks like this:
In this example, the F1 projection is selected as indicated by the filled blue square whereas the F2 projection is not selected. A selected projection can be rescaled using the toolbar rescale buttons of function keys. If you right-click inside the projection area of the data window, the following pop-up menu appears:

![Projection Menu]

Clicking **External Projection** opens the a dialog box where you can specify or search for a 1D dataset and display this as a projection of the current 2D dataset.

Clicking **Internal Projection** calculates and displays the positive projection and displays it along with the 2D spectrum.

Clicking **Baseline at Bottom** or **Baseline at Center** allows you to put the projection baseline at the respective positions.

Alternative ways to calculate/display projections are:

+ Right-click on a 1D dataset in the browser and choose:

 Display As 2D Projection

 or

+ Click **Processing** => **Calculate projections [proj]**

 This will open the dialog box shown in Fig. 10.13.
From here, you can calculate positive, negative, sum and disco projections and either show them with the 2D spectrum or display them in separate data window as a 1D data. For more details on the corresponding commands (as shown in the header of the dialog box), please refer to the Processing Reference Manual.

How to Switch on/off the Grid display

1. Click the following multi-state button in the upper toolbar:

 ![Switch between 'no grid', 'axis aligned grid' and 'fixed grid'][.gr]

Fig. 10.14 shows an example of axis aligned grid display.
How to Display a 2D Spectrum in Contour Mode

+ Click the following button in the upper toolbar:

 Switch to contour display mode [.co]

In contour mode, a spectral region looks like this:
How to Set the 2D Contour Levels

+ Click the following button in the lower toolbar

 ![Edit contour levels][edlev, .lv]

This will open the following dialog box shown in Fig. 10.15. Contour levels can be entered manually or they can be calculated.

Manual setup

This allows you to create an arbitrary sequence of levels

1. Enter the level values in the fields 1, 2, ... at the top of the dialog box.

2. Click **Apply** to update the display or **OK** to store the levels, update the display and close the dialog box.

Calculation

This allows you to easily create a geometric or equidistant sequence of levels.

1. Click one of the following items:
 - **Multiply with increment** to create a geometric sequence of levels.
 - **Add increment** to create an equidistant sequence of levels.

2. Enter the desired **Base level**, **Level increment** and **Number of levels**.

3. Click **Fill** to display and activate the sequence.

4. Click **Apply** to update the display or **OK** to store the levels, update the display and close the dialog box.

The **Contour level sign** allows you to select positive levels, negative levels or both.
How to Store interactively set Contour Levels

To store contour levels that were set interactively, for example by clicking
or pressing Alt+PageUp:

+ Click the following button in the lower toolbar:
 ![Store contour levels (.ls)]

The levels are stored in the file:

/\<dir>/data/<user>/nmr/<name>/\<expno>/pdata/<procno>/clevels

How to Display a 2D spectrum in Pseudo Color Mode

+ Click the following button in the upper toolbar:
 ![Switch to image color display mode (.im)]

In pseudo color mode, a spectral region looks like this:

![2D spectrum in Pseudo Color Mode](image)

Note that in pseudo color mode, the contours are superimposed, in black, when you zoom in on a small region of the spectrum.

How to Display a 2D Spectrum in Oblique Mode

+ Click the following button in the upper toolbar
 ![Switch to oblique display mode (.st)]

In oblique mode, a spectral region looks like in Fig. 10.16.
In this mode you can manipulate the display in various ways. Just right-click inside the data window and choose one of the options from the appearing popup menu (see Fig. 10.17)
How to Rotate a 2D Spectrum in Oblique Mode
Click-hold one of the following buttons and move the mouse up/down:

- Rotate around x-axis.
- Rotate around y-axis.

How to Switch between Displaying Positive and Negative levels
Click the following multi-state button in the lower toolbar:

- Switch between positive, negative and both contours [.1t].
Chapter 11
nD Display

11.1 Display Planes of 3D Data

3D data can be displayed as 2D planes or as a 3D cube. By default, the first F3-F1 plane is displayed (see Fig. 11.1) The plane orientation and number is shown. The cube in the lower left corner graphically indicates which plane is displayed. The full 2D display functionality is available (see chapter 10).
How to Switch to 2D Plane Display

If the 3D cube is displayed you can switch to 2D plane display by clicking one of the following buttons:

- Switch to 2D contour display.
- Switch to 2D image display.
- Switch to 2D oblique display.

How to Display various Plane Orientations

Click one of the following buttons:

- Show F1-F2 planes.
Show F2-F3 planes.

Show F3-F1 planes.

How to Display various Plane Positions (numbers)

Click one of the following buttons:

Show the next plane.

Show the previous plane.

Scan planes smoothly.

Enter the exact plane number. This will open the dialog shown in Fig. 11.2. Here, you can specify the desired plane number as well as switch to a different plane orientation.

Figure 11.2
11.2 3D Cube Display Mode

How to Display the 3D Cube

Click the following button:

Show 3d cube (see Fig. 11.3).

How to Rotate the 3D Cube

Click-hold one the following buttons and move the mouse up/down:

- Rotate cube around x-axis.
- Rotate cube around y-axis.
- Rotate cube around z-axis.

Figure 11.3
How to Scale Up/Down the 3D Cube
1. Right-click inside the data window.
2. Choose Larger or Smaller from the popup menu (see Fig. 11.4).

How to Reset the Cube Size and Orientation
Click the following button:

- Reset to default size and orientation.

How to Switch Depth Cueing on/off
1. Right-click inside the data window
2. Choose Depth Cueing On/off (see Fig. 11.4)

Depth cueing makes data points which are closer to the viewer appear brighter and those that are further away appear dimmer. This increases the depth effect of the 3D image.

How to Display a Cube Front or Side view
Click one the following buttons:

12 Show F1-F2 plane.
23 Show F2-F3 plane.
31 Show F3-F1 plane.

11.3 nD parameter display
TOPSPIN 2.1 and newer support parameter display of up to 8D data. To show processing parameters:

- click the ProcPars tab of the data window
or

+ enter `edp` on the command line

Parameters of each direction are shown in a separate column. Fig. 11.5

![Figure 11.5](image)

shows the processing parameter display of a 3D dataset.

To show acquisition parameters:

+ click the **AcquPars** tab of the data window

or

+ enter `eda` on the command line
Parameters of each direction are shown in a separate column. Fig. 11.5

![Figure 11.6](image)

shows the acquisition parameter display of a 3D dataset.

11.4 nD Fid Display

nD raw data can be displayed as a series of 1D FIDs. To do that:

- click the **FID** tab of the data window

 or

- enter `fid` on the command line
11.5 nD Peak and Integral Display

TOPSPIN 2.1 and newer support peak and integral display of up to 8D data.

To show the nD peak list:

+ click the **Peaks** tab of the data window

or

+ enter **peaks** on the command line

Fig. 11.7 shows the peak list of a 3D dataset.

![Figure 11.7](image)

The chemical shift in each of the three dimensions is shown in a separate column.
To show the nD integral list:

- click the **Integrals** tab of the data window

 or

- enter **ints** on the command line

Fig. 11.7 shows the integral list of a 3D dataset.

The chemical shift in each of the three dimensions is shown in a separate column.

Peaks and integrals only appear if they have been calculated (commands **pp** and **int**, respectively).
The upper toolbar of the 1D menu offers various buttons for interactive manipulation. If you click such a button, the active data window will switch to the corresponding mode. An interactive manipulation mode is data window specific, i.e. it only applies to the active window.

12.1 1D Interactive Window multiplication

TOPSPIN 2.0 and newer supports 1D interactive window multiplication.

12.1.1 1D Interactive Window Multiplication Procedure

How to Switch to Window Multiplication Mode

+ Click the Processing => Window Multiplication [wm], enable Manual window adjustment in the appearing dialog and click OK.

or

+ Enter .winf on the command line.

The Tab bar of the active data window will be replaced by a toolbar (see Fig. 12.2) and the data window itself will be divided into three parts:

• a parameter part at the left
1D Interactive Manipulation

- a spectrum part at the upper right
- a FID part at the lower right.

![Image of a window function tool](image)

Figure 12.1

- Show both spectrum and FID.
- Show FID only.
- Show spectrum only.
- Switch cursor information on/off (toggle)
- Save windows settings to source 2D dataset\(^1\) and return.

1. 2D data from which current 1D dataset was extracted, e.g. with `rser`.
You can perform interactive window manipulation as follows:

1. Select the window function (parameter WDW)
2. Set the corresponding parameter(s), e.g.
 - LB for exponential
 - LB and GB for Gaussian
 - SSB for sine bell and squared sine

 The displayed spectrum and/or FID will be automatically adjusted as you change the window function and parameters.

3. Click to store the window settings and return.

Now you can perform further processing steps like Fourier transform, phase correction etc.

12.2 1D Interactive Phase Correction

Manually acquired spectra can be phase corrected automatically, with commands like `apk` or `apks` or, interactively, in phase correction mode.

12.2.1 1D Interactive Phase Correction Procedure

How to Switch to Phase Correction Mode

Click the indicated button in the upper toolbar:

![Button](image)

or enter `.ph` on the command line.

The Tab bar of the active data window will be replaced by a toolbar (see Fig. 12.2)
The yellow button indicates that you are in phase correction mode.

Some buttons will turn green when they are clicked. As long as a button is green, it is active.

How to Perform a Typical 1D Interactive Phase Correction

For a typical 1D phase correction, take the following steps:

1. Click-hold the button and move the mouse until the reference peak is exactly in absorption mode.

2. Click-hold the button and move the mouse until the entire spectrum is exactly in absorption mode.

3. Click the button to save and execute the phase correction and return.

12.2.2 1D Interactive Phase Correction Details

How to Set the Phase Pivot Point

By default, the phase pivot point is set to the biggest magnitude intensity of the displayed region of the spectrum. To change the pivot point:

1. Right-click on the desired pivot point position

2. Choose *Set pivot point* from the popup menu (see Fig. 12.2)
How to Perform Default Zero Order Phase Correction
1. Right-click in the data window
2. Choose *Calculate ph0* in the popup menu (see Fig. 12.2)
The spectrum will automatically be corrected according to the calculated value.

How to Perform Interactive Zero Order Phase Correction
1. Click-hold the following button (button turns green):
 - 0 Zero order phase correction (parameter PHC0).
2. Move the mouse until the reference peak is exactly in absorption mode.
3. Release the mouse (button turns grey).

How to Perform Interactive First Order Phase Correction
1. Click-hold the following button (button turns green):
 - 1 First order phase correction (parameter PHC1).
2. Move the mouse until the entire spectrum is exactly in absorption mode.
3. Release the mouse (button turns grey).

How to Perform 90, -90 or 180° Zero Order Phase Correction
+ Click one of the following buttons:
 - 90 Perform 90 zero order phase correction [.ph90].
 - -90 Perform -90° zero order phase correction [.phm90].
 - 180 Perform 180° zero order phase correction [.ph180].

How to Reset the Phase to the Original Values
+ Click the following button:
 - R Reset zero and first order phase values [.phr].
How to Change the Mouse Sensitivity

+ Click one of the following buttons:

- Increase (double) the mouse sensitivity [.inc].
- Decrease (halve) the mouse sensitivity [.dec].
- Reset the mouse sensitivity.

How to Return from Phase Correction Mode with/without Save

To return while saving the phase correction to the current dataset:

+ Click the following button:

Save, execute and return [.sret].

This will perform the following tasks:

- Execute phase correction (command pk).
- Save the current phase correction values.
- Leave the phase correction mode.

To return without save:

+ Click the following button:

Return, discarding any changes [.ret].

To return while saving the phase correction to the source 2D dataset:

+ Click the following button:

Save to 2D [.s2d].

This is only applicable on rows or columns extracted from 2D data. The phase values will be saved to the 2D dataset from which the current 1D dataset was extracted.

12.3 1D Interactive Integration

Integration of 1D data can be done automatically, with the commands abs
and \(\text{li} \) or, interactively, as described in this paragraph.

How to Switch to Integration Mode

+ Click the indicated button in the upper toolbar:

```
2d 3d | \int | \int | \int | \int | \int |
```

or enter \(.\text{int} \) on the command line.

The Tab bar of the active data window will be replaced by a toolbar (see Fig. 12.3). The first button (define integrals) is automatically activated (is green).

![Figure 12.3 Data window in integration mode](image)

The yellow button indicates that the data window is in integration mode.

Some buttons will turn green when they are clicked. As long as a button is green, it is active.

If integral regions have already been determined, for example with \(\text{abs} \) or with a previous interactive integration, these regions are displayed in the
data window, along with the integral values. You can remove them, change them or add to them, as described below.

How to Define Integral Regions
To define integral regions interactively:

1. Click the following button (button turns green):
 ![Define integral region interactively](image)
 Define integral region interactively.
 Note that the define integrals button is automatically activated on entering the integrals mode.

2. Put the red cursor line at one edge of a peak or multiplet.
3. Left-click-hold and drag the cursor line to the other edge of the peak or multiplet.
4. Do step 2 and 3 for all regions to be defined.
5. Click the green button to leave the "define region" mode (button turns grey).

To define integral regions via a dialog box:

1. Click the following button:
 ![Define region via dialog](image)
 Define region via dialog.
2. In the appearing dialog box:
 ![Dialog box](image)
 Enter the exact values for the region limits.
3. Click **OK** to define the selected region.
How to Select/Deselect Integral Regions

To select/deselect all displayed integral regions:

+ Click the button: button

To select a single integral region:

1. Right-click in the integral region.
2. Choose Select/Deselect from the popup menu.

To select the next integral region:

+ Click the button

To select the previous integral region:

+ Click the button.

To select multiple integral regions:

1. Click the button: button to select all integrals
2. Deselect the integral that are not to be selected.

Selected integral regions are indicated by a color filled integral label. In the Fig. 12.4, the five left most regions are selected, the region around 6 ppm is currently being deselected.
Note that:

- If no integral is selected, the next and previous integral button select the first or last integral respectively.
- the select all integrals button remains green while all or multiple integrals are selected.

How to Read Integral Regions from Disk

You can read integrals regions from disk which have been stored by automatic integration (command \texttt{abs}) or by a previous interactive integration.

To read integrals:

1. Click the following button:

 ![Read integral regions](image)

 The following popup menu will appear:
2. From the popup menu, choose one of the following entries:

- **Read 'intrng'**
 to read the last saved integral regions and apply the saved slope and bias correction values.

- **Read 'intrng' no slope & bias corr.**
 to read the last saved integral regions but do not apply the saved slope and bias correction values.

- **Read 'intrng' use last slope & bias**
 to read the last saved integral regions applying the last slope and bias correction values.

- **Read 'intrng' from Relaxation Experiment**
 to read the last stored integral regions of the T1/T2 relaxation experiment.

- **Edit 'intrng'**
 to edit the file (`intrng`) that contains the integral regions and slope and bias correction values. Changes in this file are automatically shown on the screen, when the file is saved.

How to Perform Interactive Bias and Slope Correction

To perform interactive bias correction:

1. Select the integral(s) that you want to correct (right-click in the region).

 If no integral is selected, bias correction will work on all integrals.

2. Click-hold the following button (it turns green) and move the mouse,
until the integral bias is correct.

3. Release the mouse (button turns grey).

To perform interactive slope correction:

1. Select the integral(s) that you want to correct (right-click in the region).

 If no integral is selected, slope correction will work on all integrals.

2. Click-hold the following button (it turns green) and move the mouse, Integral slope correction.

 until the integral slope is correct.

3. Release the mouse (button turns grey).

How to Set the Limit for Bias Determination

+ Click the following button:

 ![Limit for bias determination](image)

How to Change the Mouse Sensitivity

+ Click one of the following buttons:

 ![Increase (double) the mouse sensitivity](image)

 ![Decrease (halve) the mouse sensitivity](image)

 ![Reset the mouse sensitivity](image)

How to Calibrate/Normalize Integrals

Calibrating integrals means setting the value of a reference integral and adjusting all other integrals accordingly. To do that:

1. Right-click in the reference integral region.

2. Choose **Calibrate** from the popup menu (see Fig. 12.6).

3. Enter the desired value for the reference integral and click **OK**

Normalizing integrals means setting the sum of all integrals and adjusting individual integral values accordingly. To do that:
1D Interactive Manipulation

1. Right-click in the reference integral region.
2. Choose **Normalize** from the popup menu (see Fig. 12.6).
3. Enter the desired sum of all integrals and click **OK**.

![Select/Deselect]

Calibrating and normalizing only effects the current dataset. To scale integrals with respect to a reference dataset, choose **lastscal** from the right/click popup menu (see below).

How to Scale Integrals with respect to Different Spectra

Integrals can be scaled with respect to the last spectrum that was integrated interactively. To do that:

1. Right-click in the reference integral region.
2. Choose **Use Lastscal for Calibration** from the popup menu (see Fig. 12.6).

As such, you can compare integrals of different spectra. Note that this only make sense for spectra which have been acquired under the same experimental conditions. The scaling factor is stored in the file:

```
<tshome>/prog/curdir/<user>/intscale
```

How to Delete Integral Regions from the Display

To delete the selected integral regions from the display:

+ Click the following button:

![Delete]

Delete selected integral regions from the display.

To delete a single integral region from the display:

1. Right-click in the integral region.
2. Choose Delete from the popup menu (see Fig. 12.6)

To delete all integral regions from the display:

+ Click the following buttons:

 📚 Select all integral regions.
 🚫 Delete selected integral regions from the display.

Note that regions are only deleted from the screen. Regions which are saved on disk (in the intrng file) are not affected.

How to Scale Selected Integrals

Integral scaling only manipulates selected integrals. However, if no integrals are selected, it works on all integrals.

+ Click one of the following buttons:

 🔍 Scale up selected integrals by a factor of 2.
 🔍 Scale down selected integrals by a factor of 2.
 🔍 Scale selected integrals up/down smoothly.

To scale up/down integrals by a factor entered via a dialog:

1. Click the following button:

 🔍 Scale integrals via a dialog.

2. Enter a scaling factor, e.g. 2.5, in the appearing dialog.

3. Click OK to apply this factor.

To scale all selected integrals to the same height:
1D Interactive Manipulation

+ Click the following button:

scale/unscale all integrals to the same height.

The individual scaling factor for each region is displayed above the integral. Clicking this button again rescales all integrals to their original height.

How to Move the Integral Trails Up/Down

To move the integrals (selected and unselected) up or down:

+ Click one of the following buttons:

 The left edge of the selected integral is put just above the baseline. If no integral is selected, the lowest integral is used.

 The right edge of the selected integral is put at 3/4 of the window height. If no integral is selected, the highest integral is used.

 Shift all integral trails up/down smoothly.

How to Cut Integral Regions

1. Click the following button (button turns green):

 Cut integral region.

2. Move the red cursor line into an integral region to the position where it must be cut and click the left mouse button.

3. Do step 2 for each integral region that must be cut.

4. Click the (green) button to leave the cut integral mode (button turns grey).

In case of overlapping integrals, you must select the integral to be cut before you actually cut it. Note that if one or more integrals are selected, cutting only works on selected integrals.

With TopSpin 2.2 1D Interactive Integration command _cut integral_ can be called directly from right-click context menu. Right mouse click on the integral opens a popup menu in which cut current integral must be selected.
How to Save Integral Regions

1. Click the following button:

 ![Save integral regions]

 The following popup menu will appear:

 - Save Regions To 'intrng'
 - Save Regions To 'reg'
 - Export Regions To Relaxation Module and .sret
 - Save & Show List

 Figure 12.7

2. Choose one of the following entries:

 • **Save regions to 'intrng'**
 Save the currently displayed integral regions including the slope and bias correction values.

 • **Save Regions to 'reg'**
 Save the integral regions to the file reg.

 • **Export Regions To Relaxation Module and .sret**
 Used on relaxation data only. Exports the integral regions for T1/T2 relaxation analysis and exits from integration mode.

 • **Save & show list**
 Save the currently displayed integral regions including the slope and bias correction values and show the integrals on the screen.

How to Undo the Last Region Operation

+ Click the following button:

 ![Undo the last region operation]

 Undo the last region operation.

How to Return from the Integration Mode with/without Save

To return and save the integrals to the current dataset:

+ Click the following button:

 ![Save integrals and return [.sret]]
As such, you will:

• save the integral regions and corresponding slope and bias corrections to the file intrng.

• save the integral regions, slope and bias corrections and integral values to the file integrals.txt. This file is displayed when you click the Integrals Tab.

• leave the integration mode.

To return without save:

+ Click the following button:

Return, discarding any changes [.ret].

How to deconvolve overlapping peaks from integration mode

Deconvolution, the line shape tool to interprete complex 1D and 2D spectra with overlapping peaks can be started directly from within integration mode. As described in the Analysis chapter deconvolution calculates theoretical signals with different methods, i. e. Gaussian, Lorentzian or a mixture of these line shapes. The values are stored in the file dconpeaks.txt and displayed graphically. For further information please look up the Analysis chapter and the Processing Reference Manual (commands gdcon, ldcon, mdcon, ppp, dconpl and dcon).

From within the integration mode, after the integration of the respective peak or peak groups, deconvolution can be started by right clicking on the
peak. The following window will appear:

![Image of a software window with options for deconvolution]

Figure 12.8

Choosing Deconvolution offers the following options:

- Deconvolve and display regions
- Change Peak Picking Parameters for Deconvolution
- Edit Peak List & Deconvolve
- Show Deconvolution Fit (graphical display)

With the latter function it is possible to display results after deconvolution graphically:
The integral values of each of the deconvolved signals are available in the integrals tab within the originally defined integral (column 'Intensity [abs]'):

Figure 12.9

Figure 12.10
12.4 1D Interactive Calibration

A 1D spectrum can be calibrated (referenced), automatically, with the command `sref` or, interactively, as described below.

How to Switch to Calibration Mode

+ Click the indicated button in the upper toolbar

or enter `.cal` on the command line. The Tab bar of the active data window will be replaced by a toolbar.

![Data window in calibration mode](image)

Figure 12.11 Data window in calibration mode

The yellow button indicates that the data window is in calibration mode.

How to Calibrate a Spectrum Interactively

In calibration mode:
1. Position the red cursor line at the reference peak.
2. Left-click at that position.

The following dialog box will appear:

![calibrate](image)

Note that the units (Hz or ppm) correspond to the axis units of the display.
3. Enter the frequency you want to assign to the reference peak.
4. Click **OK**

The spectrum will be calibrated and re-displayed. **TOPSPIN** will automatically leave calibration mode.

12.5 1D Multiple Display

The multiple display mode allows you to display multiple superimposed spectra. The spectra will be ppm aligned or Hz aligned, according to the selected axis unit. Each spectrum can be individually shifted and scaled allowing exact alignment of corresponding peaks in different spectra. The number of superimposed spectra is unlimited.

Although multiple display is normally used for spectra with matching nuclei, it allows you to superimpose spectra with non-matching nuclei. You will get a warning that the nuclei do not match. Just just click **OK** to continue.

How to Switch to Multiple Display Mode and Read Multiple Spectra

One way to superimpose data in multiple display is to read one dataset, switch to multiple display mode and add other datasets:

1. Read a 1D dataset.
2. Click the button in the upper toolbar or type .md on the command line.

 The data window will switch to multiple display mode.

3. Add a dataset as follows:
 + Left-click-hold the dataset in the browser and drag it into the data window.

 or
 + Right-click the dataset in the browser and choose Display from the popup menu.

 or
 + Enter `re` and specify the additional dataset in the appearing dialog box.

Another way to superimpose data in multiple display is to read multiple datasets simultaneously:

1. In the browser:
 + Hold down the Ctrl key and click multiple datasets to select them.

 or
 + Hold down the Shift key and click two datasets to select these two and all datasets in between.

2. Right-click any of the selected data:
 + Choose Display from the popup menu.
 This will show the data in the active data window if that is in multiple display mode or, otherwise, show the data in a new window.

 or
 + Choose Display in new window from the popup menu.
 This will show the data in a new window.

In multiple display mode, the Tab bar of the active data window is replaced by a toolbar. Fig. 12.12 shows three comparable 1D spectra and the sum of all three.
The yellow button indicates that the data window is in multiple display mode.

Some buttons will turn green when they are clicked. As long as a button is green, it is active.

Furthermore, the browser is split in two parts as shown in Fig. 12.13.
1D Interactive Manipulation
The additional lower part shows:
• which datasets are displayed in the active data window.

INDEX

• which datasets are selected (these are highlighted).

DONE
INDEX
How to work with multiple display command .md
The following arguments of .md for controlling data sets from command
line, AU-programs or Python programs are available:
1. Specified data set names can be shown in the display by command
.md:
Enter command and full pathname for a specified dataset in the TopSpin command line:
md <PathToDataset1>\<expno1>\pdata\<procno> <PathToDataset2>
\<expno2>\pdata\<procno>

2. The command .md no_load ignores the datasets stored in the last
multiple display session and enters the multiple display
3. The command .md write writes only the assoc file containing the
data set list for multiple display. Please note that the multiple display
module is not started with this command.
Enter command and full pathname of specified dataset in the TopSpin
command line:
.md write <PathToDataset1>\<expno1>\pdata\
<procno> <PathToDataset2>\<expno2>\pdata\<procno>

Multiple display mode is supported for 1D and 2D spectra. For spectra
with a dimension > 2 the selected slice (subplane) is shown.

How to Select/Deselect Datasets
To select a dataset:
+ Click in the corresponding area in the data window.
or Click the small square at the upper right of the spectrum.
or Click the corresponding entry in the lower part of the browser.

In the lower part of the browser, you can:
+ Click one dataset to select it.
or Hold down the Ctrl key and click multiple datasets to select them.

221


1D Interactive Manipulation

or Hold down the *Shift* key and click two datasets to select these two and all datasets in between.

When you select a dataset, the corresponding small square is filled (see Fig. 12.12) and its entry in the lower part of the browser is highlighted (see Fig. 12.13).

Note that:

• no spectrum selected = all spectra selected
• scale/shift buttons of the data window toolbar only work on selected spectra

To deselect a dataset:

+ Select a different dataset.

To deselect all datasets:

+ Click the following button:

Deselect all datasets.

How to Remove a Dataset from Multiple Display

1. Select the dataset(s) you want to remove.
2. Click the following button:

Remove selected data from the screen.

Note that the data on disk are not affected. Furthermore, the first spectrum cannot be removed from the screen.

How to Display the Sum or Difference Spectra

+ Click one of the following button (button turns green):

Show the difference between the first and the sum of the other datasets.

Show the sum of all datasets in the multiple display window.

How to Save the Sum or Difference Spectra

1. Click the following button:
Save the displayed sum or difference spectrum.

2. In the appearing dialog box, specify the destination *procno*.

How to Display the Next/Previous Name/Expno

To compare a series of spectra you can interactively increment or decrement the dataset name or expno. A dataset name is incremented according to the ICON-NMR naming convention of increasing extensions, e.g. name.001, name.002 etc.

+ Click one of the following button (button turns green):

 - E^{-} Show the previous name/expno/procno of the last dataset

 - E^{+} Show the previous name/expno/procno of the last dataset

 - E_{i} Set the increment options. Clicking this button will open the following dialog:

![Data set increment options](image)

Figure 12.14

Here you can choose to increment the procno, expno or name, set the expno increment and switch individual scaling on/off.
How to Toggle between Superimposed and Stacked Display

+ Click the following button:

![Toggel between superimposed and stacked display.](image)

How to Shift and Scale Individual Spectra

To compare the intensity and chemical shift of corresponding peaks, you can shift and scale individual spectra. To do this:

1. Display the spectra in multiple display mode as described above.
2. Expand the spectra to display the desired region or peak.
3. Select one of the spectra (e.g. by clicking it in the lower part of the browser).
4. Click-hold the \LEFTarrow button and move the mouse to align the intensities.
5. Click-hold the \RIGHTarrow button and move the mouse to align the peak positions.

The alignment can be facilitated by showing the difference spectrum (in the button) and minimize that. Note that you can also scale the selected spectra up/down with the buttons $\times2$ and $\times1/2$. The \uparrow button allows you to move the selected spectra vertically. Clicking the \downarrow button resets individual scaling and shifting.

The performed scaling and shifting are displayed in the data window (see Fig. 12.15 and 12.16).
How to move the selected spectrum one place up/down

+ Click the following button:

↑ Move the selected spectrum one place up in the list.
+ Click the following button:

↓ Move the selected spectrum one place down in the list.

Note that the first spectrum and calculated spectra (sum of difference) cannot be moved up/down.

How to Switch on/off the Display of Datapaths and Scaling Factors

+ Click the following button:

Switch on/off display of datapaths and scaling factors.

How to Return from Multiple Display mode

+ Click the following button:

Return from multiple display mode [. ret].

How to Set the Colors of the 1st, 2nd, .. Dataset

The colors of the different datasets in the multiple display mode can be set in the *User preferences* dialog box. To set, for example, the color of the second spectrum:

+ Click *Options => Preferences* and click the *Change* button for the item *Color of 2nd 1D spectrum*.

TOPSPIN 2.0 and newer allows you to set 8 different colors for different spectra in multiple display.

12.6 1D Interactive Baseline Correction

Baseline correction can be performed with commands like *abs* or *absd* or, interactively, as described below.

How to Switch to Baseline Correction Mode

+ Click the indicated button in the upper toolbar:
or enter `.basl` on the command line.

The Tab bar of the active data window will be replaced by a toolbar (see Fig. 12.17).

![Figure 12.17 Data window in baseline correction mode](image)

The yellow button indicates that the data window is in baseline correction mode.

Some buttons will turn green when they are clicked. As long as a button is green, it is active.

How to Perform Polynomial Baseline Correction

1. Click the following button (button turns green):

 ![Perform polynomial baseline correction](image)

 Perform polynomial baseline correction.

 In the data window, a red horizontal line will appear as well as the equation that describes the polynomial function:

 \[f(x) = A + Bx + Cx^2 + Dx^3 + Ex^4 \]
2. Click-hold button A and move the mouse until the red line coincides with the first point of the spectrum.

3. Repeat step 2 with the buttons B, C, D and E until the red line coincides with the entire baseline of the spectrum.

How to Perform Sine Baseline Correction

1. Click the following button (button turns green):

 ![Perform sine baseline correction.

 A red horizontal line will appear as well as the equation describing the sine function:

 \[f(x) = A + B \sin(Cx + D) \]

2. Click-hold button A and move the mouse until the red line coincides with the first point of the spectrum.

3. Repeat step 2 with the buttons B, C and D until the red line coincides with the entire baseline of the spectrum.

How to Perform Exponential Baseline Correction

1. Click the following button (button turns green):

 ![Perform exponential baseline correction.

 A red horizontal line will appear as well as the equation describing the exponential function:

 \[f(x) = A + B \exp(Cx) \]

2. Click-hold button A and move the mouse until the red line coincides with the first point of the spectrum.

3. Repeat step 2 with the buttons B and C until the red line coincides with the entire baseline of the spectrum.

How to Preview the Baseline Corrected Spectrum

Before actually performing the baseline correction, you can preview the result by displaying the difference between the uncorrected spectrum and the red correction line.
To do that:

1. Click the following button (button turns green):
 - Checkmark Preview corrected spectrum (show difference).
 The corrected spectrum will be displayed in red.

2. If the baseline is correct, click the button to save the correction. If further correction is needed, click the button to show the original spectrum and the red correction line.

How to Reset the Baseline Correction Line

1. Click the following button:
 - Checkmark Reset the red correction line to zero.

 If the difference spectrum is displayed (the button is active), clicking the reset button will restore the original spectrum.

How to Change the Mouse Sensitivity

+ Click one of the following buttons:
 - Triangle up Increase (double) the Mouse Sensitivity [.inc].
 - Triangle down Decrease (halve) the Mouse Sensitivity [.dec].
 - Squares Reset the Mouse Sensitivity.

How to Save the Baseline Correction and/or Return

To return while saving the baseline correction:

+ Click the following button:
 - Mouse Save baseline correction and Return [.sret]

 This will perform the following tasks:
 - Execute the baseline correction [bcm].
 - Save the baseline correction values A, B, C, D and E.
 - Leave the baseline correction mode.

To return while discarding any changes:
Click the following button:

Return, Discarding any changes [.ret].

How to Perform Cubic Spline Baseline correction

+ Click the following button:

Define points for cubic spline baseline correction.

The toolbar of the data window will change as shown in Fig. 12.18.

![Figure 12.18 Data window in spline baseline correction mode](image)

The cursor line in the data window turns red. If a list of baseline points already exists, you are prompted to overwrite or append to these points. If you choose *Append*, the labels of the existing points are displayed on the screen. If you choose *Overwrite*, no labels are displayed. Nevertheless, the existing points are only overwritten when you define and save new points.

To define new baseline points:

1. Move the cursor line to a baseline point and left-click at that position.

2. Do this for at least five baseline points.

Fig. 12.18 shows a spectrum with five defined baseline points. Note that here the points have been chosen at the right part of the spectrum for dis-
play reasons only.

Note that the actual baseline correction is only performed when you click the button in the spline baseline and interactive baseline mode.

How to Delete Spline Baseline Points from the screen

To delete one baseline point:

1. Right-click the baseline point position in the data window.
2. Choose *Delete Current* from the popup menu (see Fig. 12.19).

![Figure 12.19]

To delete all baseline points:

1. Right-click any position in the data window.
2. Choose *Delete All* from the popup menu (see Fig. 12.19).

How to Return from Cubic Spline Baseline mode with/without Save

To return while saving the baseline points:

+ Click the following button:

 ![Save baseline points and Return [.retsab].](image)

To return while discarding any changes:

+ Click the following button:

 ![Return, Discarding any changes [.ret].](image)

Alternatively, you can right-click in the data window and choose *Save & Quit* or *Quit*, respectively.
12.7 1D Interactive Peak Picking

Peak picking can be performed, automatically, with the commands `pps` or, interactively, in the peak picking mode.

How to Switch to Peak Picking Mode

+ Click the indicated button in the upper toolbar:

![Button image]

or enter `.pp` on the command line.

The Tab bar of the active data window will be replaced by a toolbar (see Fig. 12.20).

![Data window in peak picking mode]

Figure 12.20 Data window in peak picking mode

- The yellow button indicates that you are in peak picking mode.
- Some buttons will turn green when they are clicked. As long as a button is green, it is active.
Note that the button is automatically activated, i.e. you are in Define peak picking range mode

How to Define New Peak Picking Ranges

1. Put the cursor at the upper-left corner of a peak picking range.
2. Left-click-hold and drag the mouse to the lower-right corner of the range.

 The peak picking range will be marked green. The minimum and maximum intensity are set and the peaks in the range are picked and displayed.
3. Repeat step 1 and 2 for each peak picking range to be defined.
4. Click the green button to leave the "Define peak picking range" mode.

Note that the parameters MI and MAXI are set to the lowest minimum and the highest maximum intensity, respectively, of all ranges.

How to Change Peak Picking Ranges

1. Click the following button (button turns green):
 - ✂️ Change peak picking ranges.
2. Put the cursor on one of the edges of the peak picking range.

 The cursor turns into a double-headed arrow.
3. Left-click-hold and drag the peak range edge to its new position.
4. Optionally: repeat step 2 and 3 for the other edge and for other peak ranges.
5. Click the green button to leave the "Change peak picking range" mode.

How to Pick Peaks in Peak Picking Ranges only

Peaks in a peak range are automatically picked when the range is defined. If peaks have been deleted from a range, they can be picked again as follows:

1. Right-click in the data field.
2. Choose Pick Peaks On Ranges from the popup menu.
Alternatively, you can enter `pp1` on the command line. This command can be entered in Interactive peak picking mode or in the normal display mode.

How to Delete all Peak Picking Ranges

+ Click the button in the data window toolbar.

or

+ Right-click in the data field and click *Delete All Regions* in the popup menu.

How to Define Peaks Manually
1. Click the following button (button turns green):

 Define peaks manually.

 A red vertical line will appear in the data window.
2. Put the red cursor line at the desired peak and click the left mouse button.
 The peak label will appear at the top of the data window.
3. Repeat step 2 for each peak to be defined.
4. Click the green button to leave the "Define peaks" mode.

How to Pick Peaks Semi-Automatically
1. Click the following button (button turns green):

 Define peaks semi-automatically.
2. Move the cursor into the data window.
3. Put the cursor line near the desired peak.
4. Left-click to pick forward

 or

 Right-click to pick backward (see Fig. 12.21).

 A red cursor line will appear at the nearest peak whose intensity is between MI and MAXI.
5. Right-click to add the selected peak to the peak list (see Fig. 12.21).
The peak label will appear at the top of the data window.

6. Click the green button to leave the "define peaks semi-automatically" mode.

How to Delete Peaks from the Peak List

To delete a specific peak:

1. Right-click on a defined peak.

2. Choose *Delete peak under cursor* from the popup menu (see Fig. 12.22).

To delete all peaks:

- Click the ✗ button in the data window toolbar.

 or

- Right-click in the data field and click *Delete All Peaks* in the popup menu.
How to Return from Peak Picking Mode with/without Save

To return while saving the peak list and peak ranges:
+ Click the following button:

 ![Save the Peak Region and Peak List and Return [.sret].]

This will:
• Save the peak list to the file peak.xml and the peak ranges to the file peakrng.
• Leave the peak picking mode.

To return while discarding any changes:
+ Click the following button:

 ![Return, discarding any changes [.ret].]

How to save Peaklists and Regions in 1D interactive mode

In 1D interactive Peak Picking the ![Save as ...](button) button opens a window in which three options of saving can be chosen:

a) **Save Peaklists and Regions**

b) **Save Peaklist for Deconvolution**
 (Peaklist will be saved in a format which is needed for deconvolution)

c) **Save Peak list and start Deconvolution**
 (The Peaklist is saved and the Deconvolution will be started, after that returning to Peak Picking)
The upper toolbar of the 2D menu offers various buttons for interactive manipulation. If you click such a button, the active data window will switch to the corresponding mode. An interactive manipulation mode is data window specific, i.e. it only applies to the active window.

13.1 2D Interactive Phase Correction

2D spectra can be phase corrected interactively in both the F2 and F1 direction by selecting certain rows and/or columns and phase correct them.

13.1.1 2D Interactive Phase Correction Procedure

How to Switch to 2D Interactive Phase Correction

Click the corresponding button in the upper toolbar as indicated below:

![Button Icons]

or enter `.ph` on the command line.

The Tab bar of the active data window will be replaced by a toolbar. Fig.
13.1 shows an example of an unphased 2D inverse spectrum.

Figure 13.1 Data window in phase correction mode

- The yellow button indicates that you are in phase correction mode.
- Toggle the contour display on/off.
- Switch to *phase row* mode to display rows of selected peaks.
- Switch to *phase columns* mode to display columns of selected peaks.
- Save the phase values to the 3D data from which this 2D was extracted.
- Return.

How to Perform a Typical 2D Interactive Phase Correction

In this example we will perform F1 phase correction (columns) only. Take the following steps:

1. Select two or more peaks in different parts of the spectrum. To do
that:

a) Zoom in on a peak by drawing a box around it. To do that, click-hold the left mouse button and move the mouse (see Fig. 13.2).

b) Right-click at the peak position and choose Add from the popup menu.

c) Click the right mouse button to select the peaks for phase correction.

d) Zoom in on the next peak and add in the same way as the first one.

e) Zoom in on the next peak etc.

Fig. 13.3 shows an example of three selected peaks.
2. Click the button ☐ to phase correct the columns (F1).

A new data window called Phase 2D will appear showing the columns of the selected peaks (see Fig. 13.4).
Note that the toolbar and the right-click popup menu offer the full 1D phase correction functions.

By default, all columns are selected as indicated by the filled blue squares. The red vertical line indicates the default pivot point in the upper column.

3. A typical way to perform phase correction is:
 - Click-hold the button for zero order correction and move the mouse until the reference peak of the first column is exactly in absorption mode.
 - Click-hold the button for first order correction and move the mouse until the reference peak in other column is exactly in absorption mode.
 - Click the button to execute, save and return (see Fig. 13.5).

![Figure 13.5](image)

13.1.2 2D Interactive Phase Correction Details

How to Scale or Shift Individual Rows/Columns

To select one row or column:
Click in the corresponding part of the data window. The selected row/column will be marked with a filled blue square □ whereas unselected rows/columns will be marked with an unfilled blue square □. Selecting a single row /column allows you to shift and scale it separately from the other rows/columns as shown in Fig. 13.6.

![Figure 13.6](image)

To select all rows or columns,

+ Click the following button:

![Select all rows or columns](image)

How to Perform Smooth Phase Correction

To perform zero order phase correction:

1. Click-hold the following button (it turns green) and move the mouse:

![Zero order phase correction](image)

until the reference peak of the first row/column is exactly in absorption mode.

2. Release the mouse (button turns grey).

The parameter PHC0 will be set accordingly.
To perform first order phase correction:

1. Click-hold the following button (it turns green) and move the mouse:
 - First order phase correction.
 - until the reference peak of the second and further rows/columns is exactly in absorption mode.

2. Release the mouse (button turns grey).
 - The parameter PHC1 will be set accordingly.

How to Perform 90, -90 or 180° Zero Order Phase Correction

Click one of the following buttons:

- **90** 90° zero order phase correction.
- **-90** -90° zero order phase correction.
- **180** 180° zero order phase correction.

How to Reset the Phase to the Original Values

Click the following button:

- **R** Reset zero and first order phase.

How to Change the Mouse Sensitivity

Click one of the following buttons:

- **inc** Increase (double) the mouse sensitivity.
- **dec** Decrease (halve) the mouse sensitivity.
- **Reset** Reset the mouse sensitivity to 2.0.

How to Show the Next/Previous Row or Column

To show the next row/column, click the following button:

- **Show next row/column.**

Note that only the selected row/column is increased. If all rows/columns
are selected, only the first one is increased.

To show the previous row/column, click the following button:

Show previous row/column.

Note that only the selected row/column is decreased. If all rows/columns are selected, only the first one is decreased.

How to Arrange Rows or Columns

Click one of the following buttons:

- Arrange rows/columns horizontally.
- Arrange rows/columns vertically (see Fig. 13.6).
- Arrange rows/columns vertically in a split window.

How to Return from Multi-1D Phase to 2D Phase Display

Click the following button:

to save, execute and return.

This will perform the following tasks:

- Execute phase correction.
- Save the current phase correction values.
- Leave the multi-1D phase mode.

Click the following button:

to return to the 2D phase display without save.

How to Return from 2D Phase Mode

Click the following button:

Return.

13.2 2D Interactive Integration

TOPSPIN 2.1 and newer supports interactive 2D integration.
13.2.1 How to Switch to 2D Interactive Integration

Click the corresponding button in the upper toolbar as indicated below

or enter .int on the command line.

The Tab bar of the active data window will be replaced by a toolbar. Fig. 13.7 shows an example of a 2D inverse spectrum.

Figure 13.7 Data window in interactive integration mode

- The yellow button indicates that you are in integration mode.
- "Define integral region" mode (active when green)
- Move integral region (green when active).
- Copy a region.
- Delete all integral regions.
13.2.2 2D Interactive Integration Procedure

When you switch to 2D integration mode, the "Define integral region" mode is active by default. This means you can immediately start defining the integral regions. To do that:

1. Click and hold the left mouse button at any corner of a region to be defined, move the mouse to draw a box around that region and release the mouse.

2. Choose one of the following options from the appearing popup menu:

 * **Integrate: a**: to add up all intensities in the region
 * **Integrate: +**: to add up all positive intensities in the region
 * **Integrate: -**: to add up all negative intensities in the region
 * **Integrate: a + -**: to add up all intensities in the region and store separate entries for all, positive and negative intensities.
 * **Integrate: a +**: to add up all intensities in the region and store separate entries for all and positive intensities.
 * **Integrate: a -**: to add up all intensities in the region and store separate entries for all and negative intensities.
 * **Integrate: + -**: to add up all intensities in the region and store separate entries for positive and negative intensities.

The integral regions will be displayed along with their storage num-
bers and modes (see Fig. 13.8).

Figure 13.8

3. Click the \int button and choose *Integrate current regions* from the pull-down menu to integrate the defined regions.

4. Click the \int button again and choose *List integral values* from the pulldown menu to show the list of integrals.

Table 13.1 shows the list of integrals based on the regions defined in Fig. 13.8.
<table>
<thead>
<tr>
<th>#</th>
<th>SI_F</th>
<th>row1 ppm</th>
<th>row2 ppm</th>
<th>row1 ppm</th>
<th>row2 ppm</th>
<th>Abs. Int.</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>666</td>
<td>689</td>
<td>50.1458</td>
<td>46.4313</td>
<td>9.2529e+00</td>
<td>882.42</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>510</td>
<td>522</td>
<td>6.04420</td>
<td>5.89291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>597</td>
<td>632</td>
<td>61.2893</td>
<td>55.7175</td>
<td>1.1135e+00</td>
<td>1062</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>520</td>
<td>533</td>
<td>5.91452</td>
<td>5.74162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>652</td>
<td>692</td>
<td>52.4673</td>
<td>45.9670</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>566</td>
<td>579</td>
<td>5.31659</td>
<td>5.15089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>683</td>
<td>721</td>
<td>47.3599</td>
<td>41.3238</td>
<td>1.0072e+00</td>
<td>960.57</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>589</td>
<td>605</td>
<td>5.02122</td>
<td>4.81230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>683</td>
<td>721</td>
<td>47.3599</td>
<td>41.3238</td>
<td>1.064e+009</td>
<td>1014.7</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>589</td>
<td>605</td>
<td>5.02122</td>
<td>4.81230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>683</td>
<td>721</td>
<td>47.3599</td>
<td>41.3238</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>589</td>
<td>605</td>
<td>5.02122</td>
<td>4.81230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>502</td>
<td>543</td>
<td>76.6116</td>
<td>70.11130</td>
<td>1.2637e+00</td>
<td>1205.2</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>637</td>
<td>649</td>
<td>4.38726</td>
<td>4.23598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>502</td>
<td>543</td>
<td>76.6116</td>
<td>70.11130</td>
<td>1.2911e+00</td>
<td>1231.3</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>637</td>
<td>649</td>
<td>4.38726</td>
<td>4.23598</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13.1
Alternatively, you can define a reference integral and integrate the defined regions of the same or of a different dataset, relative to this integral. For this purpose the button offers the following menu items:

- **Integrate current regions rel. to reference**
 You will be prompted for the reference integral number and value.

- **List integral values**
 The output list will now show an additional column with the normalized integral values.

- **Define current dataset as reference**
 You will be prompted for the reference integral number and value.

- **Integrate and use ref. dataset for calibration**
 The integral value defined on the reference dataset is used for calibration.

How to Move an Integral region

1. Click the button (it turns green).
2. Move the mouse into the region to be moved.
3. Left-click-hold and move the mouse to move the region.
4. Release the mouse at the desired position.

How to Copy an Integral region

1. Click the button (it turns green)
2. Move the mouse into the region to be copied
3. Left-click-hold and move the mouse to the desired position
4. Release the mouse to copy the region.

How to Delete all Integral Regions

1. Click the button .
2. Click OK to confirm deletion.

How to Read/Import Integral Regions

1. Click the button .
2. Click Read intrng to read the last stored integral ranges
or

Click **Import Integration Regions** to import an exported integral region file (see below)

How to Save/Export Integral Regions
1. Click the button
2. Click **Save Regions to intrng** to save the regions to the current dataset PROCNO (file int2drng)

or

Click **Export Integration Regions** to export the integration region file for general usage; i.e. usage with other datasets.

How to Return from 2D Integration mode
Click the following button:

 to save the current integral regions and return.

Click the following button:

 to return to the 2D integration mode without save.

13.3 2D Multiple Display and Row/Column Handling

2D multiple display shows a 2D spectrum with an arbitrary number of 1D and/or 2D spectra superimposed.

Spectra are ppm aligned or Hz aligned, according to the selected axis unit.

A superimposed 1D spectrum is automatically displayed in the direction of the matching nucleus (for a hetero-nuclear 2D) or in the F2 direction (for a homo-nuclear 2D).

Although multiple display is normally used for spectra with matching nuclei, it allows you to superimposed spectra with non-matching nuclei. You will get a warning that the nuclei do not match. Just just click **OK** to continue.

How Switch to Multiple Display mode and Read Multiple Spectra
Switching to multiple display and reading multiple spectra can be done in
two different ways:

• Read a 2D dataset and click to switch to multiple display mode. Then add 1D and/or 2D spectra, e.g. from the browser or with re.

or

• Select multiple spectra in the browser, right-click one of them and click Display.

For a more detailed description of reading multiple data in multiple display mode, see chapter 12.5.

In multiple display mode, the Tab bar of the active data window is replaced by a toolbar (see Fig. 13.9).

Figure 13.9 Multiple display with two 2D spectra superimposed
The yellow button indicates that the data window is in multiple display mode.

Some buttons will turn green when they are clicked. As long as a button is green, it is active.

The browser in multiple display is split in two parts (see Fig. 13.11). The additional lower part shows:

- which datasets are displayed in the active data window
- which datasets are selected (they are highlighted)
How to Align Multiple 2D Spectra

2D spectra in multiple display can be individually shifted. To do that:

1. Select one of the spectra in the lower part of the browser.
2. Click-hold the button and move the mouse.

Fig. 13.12 shows a region of two comparable 1H/13C inverse 2D datasets which are shifted relative to each other.

Clicking the button resets individual scaling and shifting.

How to Display the Next/Previous Name/Expno

To compare a series of spectra you can interactively increment or decrement the dataset name or expno. A dataset name is incremented according to the ICON-NMR naming convention of increasing extensions, e.g. name.001, name.002 etc.

+ Click one of the following button (button turns green):

 ![Button](Image)

 Show the previous name/expno/procno of the last dataset
Show the previous name/expno/procno of the last dataset

Set the increment options. Clicking this button will open the following dialog where you can choose to increment the procno, expno or name, set the expno increment and switch individual scaling on/off.

How to Scan Rows/Columns

Click the following button (it turns green) and move the mouse in the data field:

- to scan rows in the 2D spectrum.

Click the following button (it turns green) and move the mouse in the data field:

- to scan columns in the 2D spectrum.

Click the following button (it turns green) and move the mouse in the data field:

- to scan rows and columns in the 2D spectrum.

To scale up the displayed row/column:

+ Click the left mouse button or turn the mouse wheel up.

To scale down the displayed row/column:

+ Click the middle mouse button or turn the mouse wheel down.

How to Grab a Row/Column

You can grab a row or column, i.e. keep it displayed in the data window as follows:

1. Scan rows or columns as described above and hold at the desired position.
2. Right-click in the data window.
3. Choose *Grab Row/Column* from the popup menu (see Fig. 13.13).

Note that a grabbed row/column appears in the lower apart of the browser. It can be selected there and individually scaled or shifted.
2D Interactive Manipulation

Fig. 13.14 shows row 619 with the 1D baseline at the center of the data window.

How to Show the Next/Previous Row or Column

To show the next row/column, click the following button:

- Show next row/column.

To show the previous row/column, click the following button:

- Show previous row/column.
Alternatively, you can turn the mouse wheel, while pressing the Shift key to show the next/previous rows/columns.

How to Move the Selected Dataset Up/Down in the Dataset List

To move the selected dataset up, click the following button:

![Up Arrow] Move the selected dataset up.

To move the selected dataset down, click the following button:

![Down Arrow] Move the selected dataset down.

How to Extract a Row/Column

1. Scan rows or columns as described above and hold at the desired position.

2. Right-click in the data window and choose *Extract Row/Column* from the popup menu (see Fig. 13.13).

3. Specify the row/column number and output *procno* in the dialog box. Note that the ROW/COLUMN field is initialized with the grabbed row/column or, if no grabbing was done, with the current row/column.

4. Click *OK*

The extracted row or column is stored as a 1D dataset under the specified PROCNO and displayed in a new data window. In the upper left part of this, the row number and source 2D dataset is specified (see Fig. 13.15).
How to Copy Contour Levels from First to Other Spectra

Click the following button:

Copy contour levels from the first to the other spectra.

Note that the contour levels are only changed on screen, not on disk.

How to Switch on/off 2D contour display

Click the following button:

Switch on/off 2D contour display.

How to Position the Baseline of the Row/Column

To put the baseline at the center of the data window:

1. Right-click in the data window.

2. Choose in Baseline At Center from the popup menu (see Fig. 13.13).

To put the baseline at the bottom of the data window:
1. Right-click in the data window.
2. Choose in *Baseline At Bottom* from the popup menu (see Fig. 13.13).
This works both in the scan submode or on a grabbed row/column.

13.4 2D Interactive Calibration

A 2D spectrum can be calibrated, automatically with the command `sref` or, interactively as described below.

How to Switch to 2D Calibration mode

1. Click the corresponding button in the upper toolbar:

 ![1d 3d button]

2. or enter `.cal` on the command line. The Tab bar of the active data window will be replaced by a toolbar (see Fig. 13.16).

Figure 13.16 Data window in calibration mode

The yellow button indicates that the data window is in calibration mode.
How to Perform 2D Calibration

In calibration mode:

1. Left-click in the data window at the reference peak.
 The following dialog box will appear:

 ![Calibration Dialog Box]

 Note that the units for F2 and F1 (Hz or ppm) correspond to the axis units of the display.

2. Enter the F2 and F1 frequency you want to assign to the reference peak.

3. Click OK.
 The spectrum will be calibrated and re-displayed.

2D Chemical Shift Distance Measurement

How to Measure a 2D Chemical Shift Distance

1. Click the following button (button turns green):
 Chemical shift distance measurement.

2. Click-hold the left mouse button at one peak position and drag the mouse to another peak position.
 The distance in ppm, will be displayed.

3. Right-click in the data window to quit distance mode (button turns grey).
Figure 13.17 Data window in distance measurement mode
Chapter 14
Data Window Handling

14.1 Data Windows

The TOPSPIN window has a data area that may contain multiple data windows. The size of the data area depends on the overall size of the TOPSPIN window and on presence of the Browser and/or Processing Guide. Fig. 14.1 shows the TOPSPIN window with the Browser and three data windows.
Note that the three data windows show different data objects: 1D processing parameters, a 1D spectrum and a 2D spectrum.

How to Move a Data Window

+ Click-hold the title bar and move the mouse.

How to Resize a Data Window

1. Move the cursor to the window edge until it becomes a double-headed arrow.

2. Left-click-hold that position and move the mouse.

Depending on the position of the double-headed arrow, you can change the window height, width or both (see Fig. 14.2)
How to Select (activate) a Data Window

The active data window is the window of which the title bar is highlighted. The TOPSPIN menu, tool bars and command line commands correspond to and act on that window. Only one data window is active at a time.

To activate a different data window:

+ Click in the desired data window or click its title bar.

or

+ Click one of the colored radio buttons above the data area. The pressed radio button (the green one in the example below) corresponds to the current dataset.

If you hold the cursor over one of the buttons without clicking it and wait a few seconds, the corresponding dataset specification will be shown.

or
Data Window Handling

+ Click *Window* => *x* dataname expno procno dir user

where *x* is the number of the desired window and *dataname, expno, procno, dir* and *user* refer to the dataset displayed in that window.

or

+ Hit the F6 key to activate the next window. Repeat that until the desired window is the active window.

How to Open a New empty Data Window

+ Click *Window* => *New window [Alt+w-n]*

The new data window will become the active window and will, by default, cover the entire data area, hiding possible existing data windows. To open a dataset in the new window, drag a dataset from the browser or from the Windows Explorer into the new window or click *File => Open* (see also chapter 5.3).

How to Arrange Data Windows

If the data area contains multiple data windows, you can arrange them in various ways. All the arrange commands arrange the windows left to right and/or top to bottom in the order in which the windows have been active. The currently active data window will therefore be positioned at the top and/or left of the data area.

To arrange the data windows as a grid:

+ Click *Window* => *Arrange as a Grid*

Depending on the number of windows, they will be arranged vertically and/or horizontally (see Fig. 14.3).
To arrange data windows in stack (see Fig. 14.4):

+ Click *Window => Arrange in Stack*
To arrange data windows side by side (see Fig. 14.5):

+ Click *Window* => *Arrange Side-by-Side*

![Figure 14.5](image)

To cascade data windows (see Fig. 14.6):

+ Click *Window* => *Cascade*

![Figure 14.6](image)

Note that you can instruct TOPSPIN to open new data windows cascaded rather than maximized as well configure cascaded windows (command *set* => *Window settings*, see also chapter 5.3)

How to Iconify (minimize) a Data Window

+ Click the button in the windows title bar
or
+ Click *Window => Iconify all* to iconify all windows.

How to De-iconify a Data Window
+ Click the button or double-click the title bar.

How to Maximize a Data Window
+ Click the button or double-click the title bar.

The window will cover the entire data area. Note that a maximized window cannot be moved or resized but can be restored (in size and position), iconified or closed.

How to Restore the Size and Position of a Data Window
+ Click the button or double-click the title bar.

Note that this is only possible if the title bar contains the button. This is only the case after the window has been maximized or iconified.

How to Close a Data Window
To close the active data window:
+ Click *File => Close [Ctrl-w]*

or
+ Click the button in the windows title bar.

To close any data window:
+ Click the button in the data windows title bar

or
+ Click the title bar and then click *File => Close [Ctrl-w]*.

To close all data windows:
+ Click *File => Closeall [closeall]*
How to Iconify all Data Windows
+ Click Window => Iconify all

How to Maximize all Data Windows
+ Click Window => Maximize all

The active window will be displayed on top, all other windows are hidden.

How to Activate the Next Data Window
+ Click Window => Next window [F6].

The windows title bar will become highlighted.

14.2 Window Layouts

A data window layout defines the position, geometry and window type of one or more TOPSPIN windows. The following windows types are available:

- data windows
- lock display window
- acquisition display window
- BSMS display window
- temperature unit window

How to Save the Current Window Layout
1. Click Window => Save layout
2. In the appearing dialog box:
 Specify the layout File name (extension .prop) and click Save Layout

How to Read a Window Layout
1. Click Window => Read layout
2. In the appearing dialog box:
 Specify or click the layout File name and click Read Layout

Windows are arranged according to the following rules:
• Each currently displayed window type gets the position and geometry to the corresponding definition in the layout.
• If a window type is displayed but not defined in the layout, it keeps its current position and geometry.
• If a window type is defined in the layout but not displayed, the layout definition is ignored.
• Multiple data windows are, arbitrarily, assigned to the available data window definitions.

How to Swap Data Windows
Within a certain layout, you can easily swap two TOPSPIN windows with the command \texttt{swin}. If the data area contains exactly two windows, \texttt{swin} simple swaps their position and geometry. If it contains more than two data windows, \texttt{swin} opens a list from which you can select any window to be swapped with the currently selected (active) window. Swapping windows can also be executed from the \textit{Window} menu.

How to Toggle Window Decoration
By clicking \textit{Window} \Rightarrow \textit{Window Layout} \Rightarrow \textit{Toggle Window Decoration} easy toggling of window decoration is available. Especially users who work with many different windows will get more space on their monitor by using this function that hides - respectively shows - the title of the current window and reduces the used font.
Chapter 15
Analysis

15.1 Introduction

TOPSPIN offers various data analysis methods including chemical shift measurement, signal to noise calculation and T1/T2 relaxation analysis as described in this chapter. Furthermore, it offers the following structure analysis tools:

- **Multiplet Analysis**
 This allows you to easily define multiplets and deduce chemical shifts, coupling constants, multiplicities and connections.

- **Daisy (TOPSPIN 2.0 and newer)**
 This allows you to simulate spectra based on chemical shifts and coupling constants.

- **Solids Line Shape Analysis**
 This allows you to simulate and fit calculated spectra to various experimental 1D solid NMR spectra.

- **Jmol**
 A 3D Structure Viewer for displaying chemical structures.
• 2D molecule structure editor
 A program for drawing chemical structures, offering a large number of drawing tools.

• DNMR (Dynamic NMR) Lineshape Analysis
 A program to simulate temperature dependent NMR spectra, interactively set up and iteratively refine the model parameters to get the best fit of the measured and simulated 1D NMR spectra.

Structure analysis tools can be started from the Analysis menu. They are all described in the following manuals:

 + Click Help => Manuals => [Analysis and Simulation] Structure Analysis Tools

except for Daisy, which is described in the separate manual:

 + Click Help => Manuals => [Analysis and Simulation] Daisy

15.2 Chemical Shift Distance Measurement

How to Measure a Chemical Shift Distance

1. Click the following button (button turns green):

 ![Chemical shift distance measurement](image)

2. Left-click-hold at one peak position and drag the mouse to another peak position.

 The distance in ppm, will be displayed.

3. Right-click in the data window or move the cursor out of the data window to leave distance measurement mode (button turns grey).

15.3 1D Signal to Noise Calculation

How to Perform Interactive S/N Calculation

1. Click Analysis => Signal/Noise Calculation [.sino].

 The current signal region (parameters SIGF1-SIGF2) and noise region (parameters NOISF1-NOISF2) are displayed.
2. Move the mouse into the data window.

3. Left-click-hold and drag the mouse from one edge of the *signal* region to the other edge.

 A horizontal double-headed arrow will indicate the signal region.

4. Left-click-hold and drag the mouse from one edge of the *noise* region to the other edge.

 A horizontal double-headed arrow will indicate the noise region.

5. Right-click any position in the data window. The popup menu as shown in Fig. 15.2 will appear.

![Figure 15.1 Data window in S/N measurement mode](image)

![Figure 15.2 Popup menu](image)
Choose *Start S/N calculation*

The other entries allow you to redefine or clear the regions. After the noise calculation has finished, the result will appear on the screen.

How to Delete the Signal Region or Noise Region

To delete the current signal region:

1. Right-click in the data window.
2. Choose *Clear SIGREG* from the popup menu (see Fig. 15.2).

To delete the current noise region:

1. Right-click in the data window.
2. Choose *Clear NOISEREG* from the popup menu (see Fig. 15.2).

How to Edit the Limits of the Signal Region or Noise Region

1. Right-click in the data window.
2. Choose *Edit regions...* from the popup menu (see Fig. 15.2).
3. Enter new limit values in the appearing dialog box.

4. Click *OK*

The S/N value is automatically recalculated and displayed.

How to Change the Width of the Signal Region or Noise Region

1. Right-click in the data window.
2. Choose *Change region width...* from the popup menu (see Fig. 15.2).
3. Enter new width values in the appearing dialog box.

4. Click *OK*

Note that as you change the width, the right limit is modified correspondingly. The left limit is kept. The S/N value is automatically recalculated and displayed.

15.4 Deconvolution

The Analysis menu of TopSpin offers the possibility of deconvolution. This line shape tool is especially useful to interpret complex spectra in which peaks can not be defined clearly. Deconvolution calculates theoretical signals with different methods, for example Gaussian, Lorentzian or a mixture of these line shapes. As a result information of peak position, line width and integrals of deconvolved signals are available. Furthermore it is possible to display them graphically. With this auxiliary tool peaks of 1D and 2D NMR spectrum can be interpreted more easily. Overlapping peaks may be deconvolved into a sum of such line shapes.

To start deconvolution, expand the spectrum on the display to show the peak or peak group of interest. Deconvolution can be activated from the command line by typing `dcon` or from TopSpin toolbar by clicking **Analysis** --> **Line Shape Fitting** --> **Lorentz / Gauss Deconvolution**. The following
dialog box will appear:

![Deconvolution dialog box](image)

Figure 15.3

After clicking **OK** different adjustments can be made.

![Deconvolution parameters](image)

Figure 15.4

For further information about all deconvolution options and the parameters to be set, please look up the Processing Reference Manual (commands `gdcon`, `ldcon`, `mdcon`, `ppp`, `dconpl` and `dcon`).

TopSin shows the deconvolution result, i.e. peak positions, line widths and integrals on the screen and stores it in the file `dconpeaks.txt` within the
respective procno of the dataset (look up Fig. 15.5).

Figure 15.5

After closing the editor window which shows the deconvolution result, Top-Spin switches automatically to multiple display mode to show the original
Analysis

spectrum and the sum of the computed line shapes superimposed

Figure 15.6

With the option Display the Lorentz/Gauss curves of the last Deconvolution of the Deconvolution window (Fig. 15.4) it is possible to display the results of the deconvolution also graphically:

Figure 15.7
Please note that the results of deconvolution are approximated achievements to interpret complex spectra. These amounts are according to reality if the signal is an ideal Gauss- or Lorentzian shape and if the complete region of the signals is deconvolved.

15.5 Relaxation Analysis

Typically, relaxation data consist of a series of 1D FIDs measured with varying delays and stored as pseudo 2D data. To analyze these data, Topspin offers an easy to use T1/T2 Relaxation Guide. Relaxation curves of various experiment types with up to six components can be fitted.

To start the Relaxation Guide:

+ Click *Analysis => T1/T2 Relaxation [t1guide]*.

This will open the dialog box as shown in Fig. 15.8.
Just click the successive icons and follow the instructions on the screen. Note that holding the cursor over an icon shows the command line command that is executed when the icon is clicked. If you prefer to execute these commands from the command line, just click the Close button to close the Relaxation Guide.

Extract Slice

Prompts you for the FID or spectrum to be extracted for peak determination (see Fig. 15.9). Click FID to extract an FID or Spectrum to extract a spectrum. Note that the latter only works if the pseudo 2D data have been processed. If you click FID, the extracted FID is automatically processed.
We recommend to enter the FID or spectrum number which was measured with the longest delay. It can be found in the *vdlist* file in the EXPNO data directory. Then you can choose between:

- **Manual Integration.** This will switch to Interactive integration mode. The highest peak in each region will be used for relaxation analysis.

- **Manual Peak Picking.** The selected peaks will be used for relaxation analysis.

Figure 15.9

![Extract a row from 2d data](image)

Figure 15.10

![Define Peaks and/or Intervals](image)

Peaks/Ranges

Switches to interactive integration or peak picking mode as chosen
above. Here you can define the ranges or peaks to be included in the relaxation analysis. Then use button to export regions/peaks to Relaxation Module and quit the interactive mode.

Relaxation Window

Switches the 1D data window to relaxation analysis mode (see Fig. 15.11)

![Relaxation Window](image)

Figure 15.11

and performs a default fitting. By default, this is one-component, T1-intensity fitting (Function type \(uxnmrt1\)) for peak 1. If the dataset was already fitted, the previous type of fitting is performed. The fitting curve is displayed in the data section and a Brief Report is shown in the parameter section. If this default fitting is appropriate, you can view, interpret and print the results as described below. If not, you can perform the desired fitting as described below.
Perform Fitting and Calculate the Relaxation Time

Depending on the experiment, you can perform the appropriate fitting as follows:

1. Select a **Fitting type**: *Intensity* or *Area*. Either every point reflects the intensity of the biggest peak in the defined integral range or the integral itself. Both of them can be used but, depending on the experiment, one of them usually give a better fitting curve.

2. Click the \(\frac{x}{\text{y}} \) button to open the parameter dialog box. Select a **Function Type** and set the required parameters (see below).

3. Click **OK**.

4. Perform fitting and calculate the relaxation time:
 - Fit the relaxation curve for the current peak.
 - Fit the relaxation curve for all peaks.
 - Fit data according to the ASCII file t1ascii.

View and interpret the results as described below.

Function Types and Parameters

The TOPSPIN relaxation routine offers functions for various relaxation experiments with up to 6 components:

- **uxnmrt1** for one-component T1 experiments. Set the parameter *List file name* to the list type used during the acquisition. Set *Pick data points* to PD or PD0 (see below). The T1 fitting function is defined by the function:

\[
I(t) = I(0) + P \times \exp\left(\frac{t}{T1}\right)
\]

where \(I \) is Intensity or Area according to the Fitting Type. The best fit is calculated by varying \(I(0), P \) and T1 in an iterative process accord-
ing to the Levenberg-Marquardt algorithm. Clicking and executes the commands \textit{ct1} (current peak) and \textit{dat1} (all peaks), respectively.

\textbf{uxnmrt2} for one-component T2 experiments. Set the parameter \textit{List file name} to the list type used during the acquisition. Set \textit{Pick data points} to PD or PD0 (see below). A T2 fitting function is defined by the function:

\[
I(t) = P \times \exp\left(\frac{t}{T2}\right)
\]

where \(I\) is Intensity or Area according to the Fitting Type. The best fit is calculated by varying \(P\) and \(T2\) in an iterative process according to the Levenberg-Marquardt algorithm. Clicking and executes the commands \textit{ct2} (current peak) and \textit{dat2} (all peaks), respectively.

\textbf{invrec, satrec, cpt1rho, expdec, gaussdec, lorgauss linear, varbigdel, varlitdel, vargrad, vardamp}: these functions can be used for various experiments with up to 6 components, except for \textbf{cpt1rho} and \textbf{lorgauss} which allow only 4 and 3 components, respectively. They all use the simplex algorithm and require some parameters to be set:

- Enter the \textbf{Number of components}
- Click the \textit{Setup} button to set the \textit{Iteration Control parameters}. For each component, the initial guess (G) and step rate (S) can be set. The initial guess for \(I[0]\) must be selected such that the sum of all components does not exceed 1. If there is only one component, \(I[0]\) is usually set to 1. The step rate is usually set to about one tenth of the initial guess. If the step rate of a variable is set to zero, then this variable is not changed during the iterations. Note that the initial guesses can also be set with the toolbar button. Clicking and executes the commands \textit{simfit} (current peak) and \textit{simfit all} (all peaks), respectively.
The Fitting Function to pick data points can be:

- **pd** - pick data points for relaxation analysis (Drift value interpreted)
- **pd0** - pick data points for relaxation analysis at constant peak positions (drift value ignored)
- **pft2** - pick data points for T2 calculation of 1D raw data.

View the Fitting Results

When the fitting procedure has finished, the fitting curve is displayed in the data section and a *Brief Report* appears in the parameter section (see Fig. 15.11). The latter consists of:

- the calculated relaxation value
- the fitted parameters
- the standard deviation SD

For further examination of the result, click one of the following buttons:

- Show the fitting result of the previous peak/area.
- Show the fitting result of the next peak/area.
- Switch x-axis to linear scaling.
- Switch x-axis to logarithmic scaling.
- Switch x-axis to square root scaling.
- Switch y-axis to logarithmic scaling. Note that this only works for curves with positive intensities/areas only.
- Import integrals from dataset ~TEMP.
- Export integrals to dataset ~TEMP
- Toggle button to hide/show information in the curve field, including algorithm, peak number and relaxation value.
- Show an extended report, including the fitted intensity or area
distribution. This consists of the same information as the brief report plus a table with the intensity or area distribution. Example:

Dataset : C:/bio/data/guest/nmr/t1test/1/pdata/1

INTENSITY fit :

\[I(t) = I_0 + P \cdot \exp(-t/T1) \]

12 points for Peak 1, Cursor Point = 7.221 ppm

Results Comp. 1

\[
\begin{align*}
I_0 & = 1.215e+000 \\
P & = -2.211e+000 \\
T1 & = 19.449s \\
SD & = 3.685e-003 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>tau</th>
<th>ppm</th>
<th>integral</th>
<th>intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.000s</td>
<td>7.221</td>
<td>2.5811e+009</td>
<td>1.9737e+008</td>
</tr>
<tr>
<td>10.000s</td>
<td>7.221</td>
<td>-3.2898e+008</td>
<td>-2.9056e+007</td>
</tr>
<tr>
<td>8.000s</td>
<td>7.221</td>
<td>-7.8525e+008</td>
<td>-6.4616e+007</td>
</tr>
<tr>
<td>5.000s</td>
<td>7.221</td>
<td>-1.6289e+009</td>
<td>-1.3101e+008</td>
</tr>
</tbody>
</table>

...

Print, Export of Copy the Fitting Results

To print the fitting curve:

+ Click *File => Print*

To export the fitting curve as a graphics file:

+ Click *File => Export*

To copy the fitting curve to the Windows Clipboard:

+ Click *Edit => Copy*
This chapter describes TOPSPIN acquisition as far as the interface is concerned. Individual acquisition command are described in the Acquisition Reference manual.

16.1 Acquisition Guide

If you are a new or occasional user, we recommend you to acquire your data with the TOPSPIN Acquisition Flowchart. This will guide you through the typical sequence of acquisition steps. To start the Acquisition Guide, click *Spectrometer => Acquisition Flowchart.*
In *Automatic mode*, the Acquisition Flowchart will simply execute each command when you click the respective button. This requires the acquisition parameters to be set correctly. In interactive mode (*Automatic mode* unchecked), the Acquisition Flowchart will, at each step, open a dialog box.
offering you the available options and required parameters. Note that the last button *To processing* will open the processing equivalent of the Acquisition Flowchart, the Processing Guide.

16.2 Acquisition Toolbar

Acquisition can be prepared, started and controlled from *Spectrometer* menu. Clicking this menu opens the pulldown menu shown in Fig. 16.2:

<table>
<thead>
<tr>
<th>Interactive Acquisition Guide [topguide]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition Flowchart</td>
</tr>
<tr>
<td>Basic/Selective Experiments</td>
</tr>
<tr>
<td>Fast Acquisition Methods</td>
</tr>
<tr>
<td>ICON-NMR</td>
</tr>
<tr>
<td>Adjustments</td>
</tr>
<tr>
<td>Acquisition</td>
</tr>
<tr>
<td>Setup</td>
</tr>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>Shim control</td>
</tr>
<tr>
<td>Accessories</td>
</tr>
<tr>
<td>Shape Tool [stdisp]</td>
</tr>
<tr>
<td>Excitation Profile [exprof]</td>
</tr>
<tr>
<td>Acquisition Status Bar On/Off</td>
</tr>
</tbody>
</table>

Figure 16.2

Here you find several categories of acquisition related commands. Each entry give access to a submenu with various commands. Fig. 16.3, for example, shows the *Setup* submenu.
For most entries, the command line command, for example `expinstall`, is specified in square brackets. Furthermore, Topspin can be configured such that right-clicking any menu entry will display the corresponding command line command. To do that right-click in an empty part of the menubar and choose *Define Right-click Action.*

For convenience, common acquisition commands can also be started from the *TOPSPIN* toolbar. The right part of the upper toolbar shows the following buttons:

- **Start the acquisition.** Acquires NS scans in the current dataset, overwriting possibly existing data. Equivalent to the command `zg`.
- **Halt the acquisition.** This stops the acquisition after the current scan has finished. All data acquired so far are saved. Equivalent to the command `halt`.
- **Stop the acquisition.** This stops the acquisition immediately. Data acquired after the last disk write (if any) are lost. Equivalent to the command `stop`.
- **Open the online FID display window.** Shows the currently acquired
FID. Only works during acquisition. Equivalent to the command `acqu`.

Open the Lock display window. Shows the lock signal. Equivalent to the command `lockdisp`.

Open the BSMS control suite.

Calculate the experiment time. Shows the total experiment time and file size of the raw data. Equivalent to the command `expt`.

Set SFO1, O1, O2 and O3 interactively. Puts a red cursor line in the data window. A left-click at the desired frequency opens a dialog box where you can set O1, O2 and/or O3.

Set the sweep width to the current region and the spectrometer frequency to the center of the current region. Update the parameters SW and SFO1, respectively.

Setup a frequency list interactively.

16.3 Data window Toolbar

TOPSPIN 2.0 and newer support dataset specific acquisition display (Figure 16.5). It is activated by clicking the `Acqu` tab of the data window toolbar. Alternatively to open the `Acqu` tab you can right click in the status bar under the TopSpin command line (Figure 16.4):

![Figure 16.4](image)

Figure 16.4
From here, you can start various acquisition commands like:

- Start acquisition [\texttt{zg}]

- Halt the acquisition [\texttt{halt}]

- Stop the acquisition [\texttt{stop}].

- Probe matching and tuning [\texttt{wobb}].

- Interactive Parameter Adjustment [\texttt{gs}].

Data specific acquisition display allows you to open multiple acquisition display windows, one for each dataset.

Note that the \textit{Acqu} tab is automatically activated when the acquisition is started from the TOPSPIN menu, toolbar or command line.
16.4 Acquisition Status Bar

The acquisition can be followed and controlled from the acquisition status bar. Before you use the acquisition status bar, it must be configured from the User Preferences window. To do that:

1. Click **Options** => **Preferences** [set].

2. Click **Acquisition status bar** in the left part of the **User preferences** box. This will show the status bar items (see Fig. 16.6).

3. Check the desired entries.

To switch the acquisition status bar on:

- Click **Spectrometer** --> **Acquisition Status Bar On/Off**

 or

- Right-click in the status line at the bottom of the TOPSPIN window and choose the popup menu **Acquisition Status Bar On/Off**

With the entries selected above, the right part of the status bar will look like
Acquisition display (left side) see above.

Acquisition display (right side) see below.

The acquisition status bar not only displays information, it also allows you to perform various actions, e.g.:

- Double-click the Time field to view detailed time and date information.
- Double-click the Lock field to open the lock display.
- Left-click the Spooler /queued /delayed /cron field to open the spooler main window.
- Double-click on sample field to open BSMS control suite.
- Double-click on VTU opens the edte window
- Right-click the Fid Flash field to switch on/off FID flashing or to stop the acquisition.
- For more information about peak power check (POWCHK) please look up the Acquisition Reference Guide, Chapter 3 - Spectrometer configuration commands. Within the command explanation of cf you will find the functionality of POWCHK.
• Right-click the **Acquisition information** field to open the following popup menu:

![Show acquisition display](image)

from this menu, you can start various acquisition commands.

• Right-click the **VTU** field to open the following popup menu:

![Options](image)

Clicking **Options** will open the following dialog box:

![Temperature monitor options](image)

Figure 16.7
• Right click the Lock field to open the following popup menu:

![Lock signal display]

BSMS panel
Toggle lock mode
Lock sample

Figure 16.8

• Right click the Spooler field to open the following popup menu:

![Show]

Suspend
Remove all jobs
Show spooler report
Show spooler log

Figure 16.9

16.5 Command Queuing and Scheduling

TOPSPIN 2.0 and newer support command queuing (spooling) and scheduling. Acquisition commands like \texttt{zg}, \texttt{go}, \texttt{rga} and \texttt{atma} are automatically queued, if this feature is \texttt{on} (default \texttt{off}). This allows you, for example, to enter multiple \texttt{zg} commands on different datasets. Automatic queuing can be switched on as follows:

1. Click \textit{Options} \Rightarrow \textit{Preferences}
2. In the User Preferences dialog:

 + Enable \textit{Auto-Spooling} under \textbf{Administration Items}

Processing commands can be queued with the command \texttt{qu}. For example, the command sequence \texttt{zg ; qu xfb} on a 2D dataset, will start an
acquisition and, when this has finished, process the data.

Acquisition and processing commands can be scheduled with the command \texttt{at}. Enter \texttt{help qu} or \texttt{help at}, for more details on the respective commands.

Queued commands can be viewed in the Spooling field of the acquisition status bar. Note that the spooling field must be activated in the User Preferences window (command \texttt{set}).

16.6 Tuning and Matching the Probehead

Tuning and matching of conventional probeheads, (non ATM), is performed with the wobble procedure. To start this:

1. Enter \texttt{wobb} on the command line.

The data window toolbar switches to the \textit{Acqu} tab and the wobble window is opened (see Fig. 16.10).

![Figure 16.10](image)

The buttons of the wobble toolbar have the following functions:
Change the number of wobble steps \([\text{wbst}]\).

Change the wobble sweep width \([\text{wbsw}]\).

Change the wobble frequency.

Switch to the next channel/nucleus (if available).

Stop the wobble procedure.

2. Turn the tuning and matching knobs on the probehead until the wobble curve is exactly in the middle and its minimum reaches the zero line.

Automatic tuning and matching of ATM probeheads can be performed with the command \textit{atma}.

16.7 Locking

The lock display can be opened by clicking the button in the toolbar or entering \textit{lockdisp} on the command line. The lock display window will appear (see Fig. 16.11).
Here, you can view the lock signal, either during the lock-in procedure or, as shown above, after lock-in has been successful. At the top of the lock window the following buttons are available:

- Open the user preferences window \([\text{set}]\).
- Toggle lock monitor mode.
- Lock the magnetic field \([\text{Lock}]\).
- Toggle lock display mode between \textit{single} and \textit{dual} color. Colors can be set in the User preferences (command \textit{set}).
- Switch grid mode between \textit{both}, \textit{vertical}, \textit{horizontal} and \textit{off}.
- Make the lock display external.
- Put focus into \textsc{TOPSPIN} window.
- Close the lock display window.

Note that an external lock display window is independent from the \textsc{TOPSPIN} window. You can for example, minimize \textsc{TOPSPIN} while keeping the lock display open.

The lock display can also be opened by double-clicking the lock field in the
acquisition status bar (see par. 16.4)

The lock process can be started by entering lock on the command line. This command is described in the Acquisition Reference manual.

16.8 BSMS Control Panel

The BSMS control panel allows shimming, locking, sample handling and helium level measurement. To open this panel:

+ Enter bsmsdisp on the command line

The BSMS Control Suite window will appear (see Fig. 16.12)
The individual functions BSMS control panel are described in detail in the Acquisition Reference manual.
16.9 Interactive Parameter Adjustment (GS)

Several parameters can be adjusted interactively, while observing the acquired FID. To start this:

+ Enter gs on the command line.

A split window will appear showing:

- the FID display (see Fig. 16.13)
- the GS parameter adjustment dialog (see Fig. 16.14)

![Figure 16.13](image)

The buttons of the FID display are the same as for the acquisition command zg (see paragraph Fig. 16.10).

The GS parameter adjustment dialog offers tabs at the top of the window to select power, frequency, delay etc. The selected parameter is shown in the middle of the window. The slider at the right of the window allows you to change the selected parameter. The current value can be viewed and modified in the field below the slider. The sensitivity of the slider can be set in
the field *Sensitivity* above the slider. The effect of the change can be viewed in the FID display, the right part of the window. This can be manipulated with the FID display buttons as described in chapter 16.10.

At the bottom of the window you find the following buttons:

- *Save*: Save the value of the current parameter.
• **Save all** : Save the values of all changed parameters.
• **Restore** : Restore the value of the current parameter.
• **Restore all** : Restore the value of all changed parameters.
• **Stop** : Stop the acquisition and quit the GS window.

16.10 Running an Acquisition

A typical acquisition is performed as follows:

1. Create a new dataset.
 a) Click *File => New* \[new, Ctrl+n\].

![New... dialog box](image)

Figure 16.15

b) Specify the datapath variables *name, expno, procno, dir* and *user*, select the desired *Solvent* and *Experiment*, enter the *Title* and click *OK*.

305
The dataset will appear in the data field with no raw and no processed data available.

2. Click the **AcquPars** tab to display the acquisition parameters.

![Figure 16.16](image)

- Optionally: click __ to show the pulse program parameters only.
- Click the __ button to read the prosol parameters

or

Set the relevant parameters manually.

As an alternative to step 2, you can set the acquisition parameters interactively in the GS window (see par. 16.9).

3. To start the acquisition:
 - Click __ in the upper toolbar or enter \textbf{zg} on the command line.

The data window toolbar will automatically switch to the Acqu tab and
the FID display window will appear:

![FID display window]

Figure 16.17

The buttons in the toolbar have the following functions:

- Show FID in shuffled mode.
- Show FID in unshuffled mode, horizontally arranged.
- Show FID in unshuffled mode, vertically arranged.
- Show FID in unshuffled mode, interleaved.
- Switch between FID and spectrum.
- Stop the acquisition \[\text{stop}\].
- Halt the acquisition \[\text{halt}\].

Clicking the \[\text{stop}\] button to switch to real time FT, turns the button
green and opens two extra buttons:

- Switch between FID and spectrum.
- Real time FT settings.
- Toggle calculation of peak with at 50%, 5.5% and 1.1% height (Shown as status parameters).

Clicking the button opens the following dialog window:

![Configure realtime ft dialog window]

The acquisition information will appear in the acquisition status bar at the bottom of the TOPSPIN window, for example:

<table>
<thead>
<tr>
<th>Acquisition information</th>
<th>Fid Flash</th>
<th>Sample</th>
<th>Time</th>
<th>Spooler</th>
</tr>
</thead>
<tbody>
<tr>
<td>scan: 2 / 16</td>
<td></td>
<td></td>
<td>10:49</td>
<td>running: 0</td>
</tr>
<tr>
<td>residual time: 1m27s</td>
<td></td>
<td></td>
<td></td>
<td>queued: 0</td>
</tr>
<tr>
<td>experiments: 1 / 1</td>
<td></td>
<td></td>
<td>Jul 15</td>
<td>delayed: 0</td>
</tr>
</tbody>
</table>

4. When the acquisition has finished:

- Enter `efp` to process the FID.

The processed spectrum will be displayed in the data window that was opened upon creating the dataset (see Fig. 16.18).
From here, the processed data can be analysed, printed and/or archived.

16.11 Shape tool

The Shape tool interface allows you to create/manipulate RF shapes and waveformat.

To start the Shape Tool interface:

+ Click *Spectrometer* => *Shape Tool*

or enter *stdisp* on the command line.

The Shape Tool window will appear (see Fig. 16.19.). This consists of a toolbar, a command line and a split pane with a data section at the right and a parameter section at the left.

If Shape Tool is opened with a dataset the current dataset will be displayed (see Fig. 16.20).
By default, a 1000 point Gauss shape is displayed with Truncation level 1.0.

The TOPSPIN menu is changed showing the additional *Shapes* and *Manipulate* menus and the adjusted *File*, *Analysis* and *Options* menus.

Note that all functions of the interactive Shape Tool can also be performed non-interactively with the TOPSPIN command `st`. This command must entered with the appropriate arguments on the command line while the associated dataset is displayed and selected.

A full description of the interactive and non-interactive Shapetool can be found under:

+ Click *Help* => *Manuals* => *[Acquisition Application Manuals]* *Shapetool*
Easy definition of Shape pulses

The usage of shaped pulses for the selective excitation is a nontrivial task that couples together all parameters such as the power level, pulse length and the excited region.

TopSpin 2.1 and newer offers easy setup of selective experiments.

For usage Shape tool is typically started by the command `stdisp` on a finished 1D preparation experiment.

1. Define the excitation regions (also see Fig. 16.10)
 a) creates a new region on the display.
 The region is put in the middle of the currently visible area. By using the mouse position and width can be changed.
 b) deletes defined regions.
 This command removes all regions. Single region can be removed using the region pop up menu.
2. Edit the excitation parameters
 a) opens a region editor.
 The region extent, the excitation type and the waveform assigned to
the region can be edited. Selection "Use same shape for all regions" button assigns the same rotation type and waveform to all regions.

Figure 16.21

The setting of available waveforms depends on the selected rotation type. The following itemization explains the rotation types:

- **Excitation**
 Used for selective excitation, the magnetization rotates from Iz to horizontal plane
- **Inversion**
 Inverts the magnetization vector in the vertical plane (Iz to -Iz)
- **Refocusing**
 Inverts the magnetization in the transversal plane (Iy to -Iy)

3. Calculate the pulse and display the excitation profile (see Fig. 16.22)
 - The resulting waveform is generated and the excitation profile is calculated.
4. Store the results

- Pressing the *save* button writes the waveform on the disk and saves the necessary parameters (pulse length, power level) to the target data set. Used parameters are set in *Options => Define Parameter Table*. The target dataset may differ from the current data (e.g. the spectrum on which Shape Tool started).

All regions and corresponding parameters (rotation type, waveform name) are stored on the disk in the directory where the acquisition parameters reside.

Following simple text format is used by the file "*Region File*":

![Figure 16.22](image)
This region definition is stored automatically after each change. The definition is also read automatically when starting Shape Tool.

For further information about Shape Tool and its functionalities please refer to the Shapetool Manual.
17.1 NMR Superuser and NMR Administration password

During TOPSPIN installation, you are prompted to define:

- the username for the so-called NMR Superuser. Under Windows this must be the name of an existing user. Under Linux it can also be a non-existing user, which is then automatically created by the installation program. After the installation, the NMR Superuser is the owner of all TOPSPIN program files. Logging in as this user allows you to remove these files, change file permissions etc. The name of the NMRSUPERUSER will be stored in the file:

 `<tshome>/conf/nmrsuperuser`

- the NMR Administration password to be used for TOPSPIN configuration commands. This password can be freely chosen and is not connected to any user. It is asked for by TOPSPIN commands like `cf`, `expinstall` etc. The encrypted NMR Administration password is stored in the file:

 `<tshome>/conf/nmradminpassword`

Note that the NMR Superuser login password and the NMR Administration password have different purposes and are totally independent.
Changing one of them does not affect the other.

How to Change the NMR Administration Password

The NMR Administration password can be changed as follows

Under Windows
1. Login as NMR Superuser or Administrator.
2. Open a Command Prompt.
3. Enter:
   ```shell
   <x>\perl\bin\perl <x>\prog\bin\installnmr <x> <NMRSUPERUSER>
   ```
 where `<x>` in the TOPSPIN installation directory.
4. Enter the old password and new password as requested.

Under Linux
1. Login as NMR Superuser or root.
2. Open a Shell.
3. Enter:
   ```shell
   <x>/prog/bin/installnmr <x> <NMRSUPERUSER>
   ```
 where `<x>` in the TOPSPIN installation directory.
4. Enter the old password and new password as requested.

If you don’t know the old NMR Administration password, you can still define a new one. In that case, you have to delete the file:

 `<x>\conf\nmradminpassword`

before you run the `installnmr` script.

17.2 Configuration

The main configuration steps are performed by the commands `cf` and `expinstall`. They can be started from the:

- Command line
- **Options** => Spectrometer tools menu
• Spectrometer => Setup menu

However, the Spectrometer menu is only available after cf has been performed once, choosing Installation for spectrometer.

How to Perform a Default Configuration on a Datastation

A default configuration can be used on a datastation. It is automatically performed (no cf required) during the installation of TOPSPIN on a new computer, a new disk or in a new TOPSPIN installation directory. The default configuration name is Bruker_default_av500 and corresponds to an Avance 500 MHz spectrometer.

For manual or interactive data processing, the automatic default configuration is sufficient. If, however, you want to use AU programs, you must execute expinstall once, selecting Installation for Datastation (Default).

How to Perform a Customized Configuration on a Datastation

If you want to configure your datastation according to a spectrometer other than default, you must first copy the configuration directory:

 <tshome>/conf/instr/<instrum>

from that spectrometer to the datastation. Here:

 <tshome> is TOPSPIN home, the directory where TOPSPIN is installed. Note that this can be different on the spectrometer than on the datastation.

 <instrum> is the configuration name.

After copying the configuration directory, you have to perform expinstall as follows:

• Click Spectrometer => Setup => Experiment installation or enter expinstall on the command line

Follow the instructions on the screen. In successive dialog boxes check/select the options below and click Next to continue:

• Installation for Datastation (Customize)
• High Resolution Systems
• The configuration name as it was copied from your spectrometer
• The items you want to install
• Select the desired printer and paper format for the parameter sets
• The spectrometer frequency, acquisition mode and pre-scan-delay

In the last dialog box, click Finish. The installation of the selected items, will start now. Wait until this process has finished.

For more details on expinstall, please refer to the description of this command in the Acquisition Reference manual.

17.3 Parameter set conversion

The command paracon changes the basic frequency in parameter sets. This allows you to use parameter sets which were created on a spectrometer with a different frequency. It opens dialog box shown in Fig. 17.1

Here you can setup a list of available parameter sets. You can select Bruker and/or User defined parameter sets and use a match string. The matching parameter sets appear in the right part of the dialog box. To start the conversion, select one or more parameter sets and click OK.

17.4 Automation

How to Install AU Programs

To install AU programs, you have to run the command expinstall (see chapter 17.2).

How to Open the AU Program Dialog Box

To get a list of all AU programs, enter edau or:

1. Click File => Run...
2. Click Execute an AU program in the appearing dialog box.
3. Click OK

A dialog box showing either the Bruker defined or User defined AU programs. Fig. 17.2 shows a dialog box with two User defined AU programs.
Figure 17.1
Note that Bruker AU programs are only shown if the command `expinstall` has been executed once, after the installation of TOPSPIN.

How to Switch to the List of User defined AU Programs

1. Click **Options** => **Preferences** => **directories** => **Manage Source Directories** in the menu bar to open the AU program dialog box.

How to Switch to the List of Bruker defined AU Programs

1. Click **Options** => **Preferences** => **Directories** => **Manage Source Directories** in the menu bar to open the AU program dialog box.

How to Define the AU Programs Source Directory

1. Click **Options** => **Manage Source Directories** in the AU program dialog box.
2. In the field **AU Programs**: Add or modify AU program source directories.

How to Create an AU Program

1. Click **File** => **New** in the AU program dialog box.
2. Enter the AU program name in the field **New name** and click **OK**.
3. Enter the AU program lines in the edit field of the appearing dialog box.
4. Click **Compile** to compile the AU program.

5. Click **File => Save** to store the AU program.

6. Click **File => Close** to close the editor.

Alternatively, you can enter `edau <name>` on the command line to create the AU program `<name>`.

How to Edit an Existing AU Program

1. Double-click the AU program name in the AU program dialog box

 or

 Click the **Edit** button to edit the highlighted AU program.

2. Modify the AU program according to you wishes.

3. Click **Save** to store the AU program under the name shown in the title bar.

4. You will be prompted to compile the AU program: click **OK**.

Alternatively, you can enter `edau <name>` on the command line to edit the AU program `<name>`.

How to Execute an AU Program

1. Select the AU program in the AU program dialog box.

2. Click the **Execute** button.

Alternatively, you can enter `<name>` or `xau <name>` on the command line to execute the AU program `<name>`.

If the AU program has not been compiled, compilation is automatically performed before the execution starts.

How to Delete an AU Program

1. Select the AU program in the AU program dialog box.

2. Click **File => Delete** or click the **Delete** button.

How to Show Comments (short descriptions) in the AU Program List

To switch on/off the comments in the AU program list:
in the AU program dialog box: Click *Options* and select the entry *Comment*.

A comment is a short description of the AU program which is also part of the AU program header.
Chapter 18

Regulatory Compliance

TopSpin complies with the FDA 21 CFR Part 11 regulations. Please read the , accessible under Help => Manuals => [Good Laboratory Practice] 21 CFR Part 11 compliance. This chapter describes the respective functionalities provided by TOPSPIN in detail.

18.1 Audit Trails

A TOPSPIN data set consists of acquisition (= raw) data and processed data. These are stored in a directory tree with the following structure:

<dir>\data\<user>\nmr\<name>\<expno>\pdata\<procno>

The acquisition data are stored in the expno subdirectory and the processed data are stored in the procno subdirectory.

18.1.1 The raw data audit trail

Each expno sub-directory contains a text file audita.txt, the audit trail of the raw data. This reflects the acquisition state of the raw data, and contains a checksum for the file itself (audita.txt) and one for the raw data file (fid or ser). The latter checksum links the audit file with the raw data. By means of the checksums, any illegal manipulation of the audit file or the raw data file can be detected, using the TOPSPIN commands audit or auditcheck.
Whenever an acquisition is started, the possibly existing audit file is overwritten by a new one, belonging to the new raw data file. By default, the user is warned when the current dataset already contains raw data, thus preventing accidental overwriting (The option “Override existing fid without inquiry” is, by default, off (see \textit{Options} \Rightarrow \textit{Preferences} \Rightarrow \textit{Acquisition}).

\subsection{18.1.2 The processed data audit trail}

Each \textit{procno} sub-directory contains a text file \texttt{auditp.txt}, the audit trail of the processed data. It reflects the processing state of the processed data and contains a checksum for the file itself (\texttt{auditp.txt}), and a checksum for the real processed data files ($1r$, $2rr$, $3rrr$, ...). The latter checksum links the audit file with the processed data. By means of the checksums, any illegal manipulation of the audit file or the processed data file can be detected, using the \textsc{TOPSPIN} commands \texttt{audit} or \texttt{auditcheck}. Whenever a processing command is performed, the current audit file is updated with this command and its associated parameters. When processing starts from scratch (from a raw data file), the existing audit file is overwritten. As such, the processed data can always be regenerated from raw data by applying the commands and parameters listed in the audit trail.

If the laboratory management does not allow data files or audit trails to be deleted, a respective saving procedure must be established. For this purpose, \textsc{TOPSPIN} provides data copying commands, which may be called in a user defined macro or AU program, before a new acquisition or processing starts.

\subsection{18.1.3 Viewing audit trails}

Since audit trails are regular ASCII text files, they can be viewed or printed with any text editor, outside of \textsc{TOPSPIN}. Within \textsc{TOPSPIN}, you can use the command \texttt{audit} for this purpose. This opens the dialog box show in Fig. 18.1.
The first two entries allow you to view the audit trail files. The third entry performs an audit trail check, i.e. a data consistency check. If both raw and processed data are consistent, you will get the message shown in Fig. 18.2.

If the data have been manipulated outside of TOPSPIN, e.g. with third party software, the checksum will be inconsistent. Fig. 18.3 shows the message
for inconsistent processed data.

![auditcheck](image)

Figure 18.3

The fourth and fifth entry in Fig. 18.1 allow you to add a comment to the raw or processed audit trail files, respectively.

18.1.4 Audit trail contents

The contents of an audit file is grouped in the following way:

\[(\text{NUMBER}, \text{WHEN}, \text{WHO}, \text{WHERE}, \text{PROCESS}, \text{VERSION}, \text{WHAT})\]

These entries have the following meaning:

NUMBER

Running number of an entry, starting with 1.

WHEN

Date of the entry, e.g. <2004-03-30 10:55:36.171 +0200>, where the last value represents the offset in hours to Universal Time (UTC).

WHO

The user logged in, at the time the entry was generated. It has one of the two forms:

\(<\text{user1}>\) or \(<\text{user1}/\text{user2}>\). \(<\text{user1}>\) is always the user who is logged into the operating system (Windows or Linux user), and who started TOPSPIN. \(<\text{user2}>\) only appears, if the NMR administrator has setup an internal TOPSPIN user administration, and the op-
tion. Enforce "login" for working with TOPSPIN in the User Administration dialog is enabled (see below, command \textit{uadmin}). In this case \texttt{<user2>} is the current internal TOPSPIN user.

WHERE

The network name of the current computer, e.g. \texttt{<EOS2>}

PROCESS

The TOPSPIN process (module) which performed the acquisition or processing.

VERSION

The TopSpin version which performed the acquisition or processing.

WHAT

The type of acquisition or data manipulation performed.

Note that if only the entries NUMBER, WHEN, WHO, WHERE, WHAT are present, then the audit trail was created by TOPSPIN 1.3 or older.

18.1.5 Adding a comment to an audit trail

Audit trail entries are normally generated automatically by a respective acquisition or processing command. However, a user can also add a comment manually, using the \texttt{audit} command. This will generate a regular entry, the comment will appear under the WHAT section and is preceded by the tag "user comment:"

You may also add a comment to the raw data or processed data audit trail from an AU program, using the macros \texttt{AUDITCOMMENTA(comment)} or \texttt{AUDITCOMMENTP(comment)}, respectively. Alternatively, you can store the comment in a file \texttt{auditc.txt} in the \texttt{expno} or \texttt{procno} directory, and use the macros \texttt{GDCHECK_RAW} or \texttt{GDCHECK}

18.1.6 Auditing user-defined data manipulations

When manipulating a data file with a user-defined algorithm, e.g. by means of an AU program or external program, the data file and the respective audit trail become inconsistent (detectable with the command \texttt{auditch-eck}), and the data set is no longer compatible with regulations. In order to
solve this problem, TOPSPIN provides a function CheckSumFile, which adds the correct data checksum to the audit trails, and a function AuditAppend for additional text (an alternative to the comment function described above). These functions are described in the AU manual which can be opened by clicking Help => Manuals => [Programming Manuals] AU programming.

18.1.7 Audit Trails in JCAMP-DX and ZIP archives

The TOPSPIN commands tojdx and tozip allow you to store a data set into a single file in the internationally standardized ASCII-type JCAMP-DX format or in the well-known ZIP format, respectively. Both storage formats retain the audit trails. When unpacking such files with fromjdx or fromzip, respectively, the original data set in standard Bruker format is restored. The command auditcheck may be used to check whether the data are still consistent. If, for example, JCAMP-DX or ZIP file have been manipulated, the data might not be consistent.

18.2 Electronic Signatures

18.2.1 Signing a data set

The command esign adds an electronic signature to the raw data or to the processed data of a data set. It opens a dialog where you can select the data component to be signed, the signature meaning and, optionally, add a comment. esign requires that the NMR administrator has set up a list of users who are allowed to sign a data set, along with definitions of signature meanings (e.g. review, approval). See below for details, command uadmin.
18.2.2 Structure of a signature

In TOPSPIN, an electronic signature is realized as a special entry appended to the audit trail of the raw or processed data. It is therefore linked with the data and protected against manipulations just like any other audit trail entry. Signatures can be viewed with the command `audit`. An electronic signature consists of the following items:

USER ID

The ID of the user logged in at the time `esign` was executed. This is either the user who was logged into the operating system (Windows or Linux user), and who started TOPSPIN, or the TOPSPIN internal user. Which of these two modes is applied depends on how the NMR administrator configured TOPSPIN: If the option *Enforce "login" for working with TOPSPIN* is disabled (see below, command `uadmin`), the first mode is active, otherwise the second.

What is the difference between the modes?

- In the first case, the System User (= Windows or Linux user) who started TOPSPIN signs the data set. Prior to signing, `esign` requests this user's password, which is administrated by the operating system (OS). No internal TOPSPIN user management...
plays a role. Advantage: This mode is entirely OS compliant. Disadvantages: a) TOPSPIN termination/restart is required when a different user wants to sign data (alternatively several licenses would admit simultaneous TOPSPIN sessions). b) All TOPSPIN users must have an OS login.

- In the second case, any TOPSPIN internal user who is enabled by the NMR administrator (with uadmin) may sign. Advantage: Convenient and easy usage. Disadvantage: TOPSPIN internal user management is required (internal users and their passwords).

USER NAME

The complete name of the signer as specified by the NMR administrator during user administration (command uadmin).

SIGNATURE MEANING

The meaning of a signature, e.g. Review or Approval. A user may only select meanings that were assigned to him by the NMR administrator during user administration.

SIGNATURE COMMENT

Any text.

18.2.3 Displaying the electronic signature in the data window

The electronic signature can be displayed in the data window by setting the corresponding display component. To do that:

1. Right-click in the data window and choose Display Properties...
2. Check Electronic Signature in the appearing dialog box and click OK.

The electronic signature will appear, at the upper left corner, below the title.

18.2.4 Plotting the electronic signature

When plotting a dataset using TOPSPIN's plot editor (commands plot and autoplot), an electronic signature is automatically plotted (unless this feature is disabled), if the last entry of the audit trail of the data to be plot-
ted is an electronic signature. This ensures that after signing no more data manipulations have been performed.

18.2.5 Multiple signatures

The command esign may be applied several times to a data set, for instance if two persons (say an operator and an administrator) must sign in accordance with company regulations.

18.2.6 Validity and security of signatures

TOPSPIN electronic signatures of data sets must not be confused with digital signatures as defined in applicable law. Digital signature laws are usually country dependent. They require the administration of passwords (more general: electronic keys which authenticate the owner of the document) to be performed by authorized trust centers. In contrast, TOPSPIN uses OS-encrypted passwords or internal user passwords encrypted by TOPSPIN itself.

For this reason, a Standard Operating Procedure (SOP) of the company or institution that wishes to apply TOPSPIN signatures must exist defining the role of TOPSPIN signatures.

For this reason, companies and institutions that want to apply TOPSPIN signatures must have a Standard Operating Procedure (SOP), which defines the role of these signatures.

Note that digital signatures complying with respective laws requires special software, and the involvement of trust centers. Bruker refers to the respective commercial software for this purpose.

18.3 Password Controlled Login Identification

18.3.1 Definition of an internal user

In TOPSPIN, the NMR administrator may set up a list of internal TOPSPIN users. An internal user need not have a user account for the operating system and is only known to TOPSPIN. Such a user is characterized by the following items:
USER ID

A short unique string of characters identifying a user (e.g. guest)

USER NAME

A long string of characters, usually the full name of a user (e.g. Franz J. Maier)

SIGNATURE MEANINGS

A list of items separated by comma (e.g. Approval, Review), an empty string or the special string “-NONE-”. In the latter two cases, this user cannot electronically sign data. In all other cases, the user is allowed to sign. The esign dialog allows the user to select one of the items to specify the meaning of the signature.

PASSWORD

A password for this user, required for using TOPSPIN and for applying an electronic signature.

18.3.2 How to set up internal users

In order to define or modify the list of internal users:

+ enter the command uadmin

or

+ Click Options => Preferences => Administration items

Click the Change button to the right of the object Setup users for Top-Spin-internal login/logoff and esign.

You will be prompted for the NMR administrator password. A dialog will appear.
where you can add, remove and/or modify users

18.3.3 How to change the internal user password

To change the password of the internal user:

+ enter `chpwd` on the command line

or

+ Click Options => Administration => Change internal user password

and enter the new password twice, as requested.

18.3.4 Login/Logoff

The `uadmin` command allows the administrator to make a TOPSPIN internal user mandatory. To do that, enable Enforce "login" for working with Top-Spin at the top of the dialog, click Save+Close and restart TOPSPIN. After the restart, a login prompt will be displayed and TOPSPIN cannot be used with-
out entering an internal user and his password.

To log off the internal user:

+ Enter `logoff` on the command line

or

+ Click Options => Administration => Log off

and enter the user name and password as requested.

If TOPSPIN internal user is not mandatory, i.e. the entry Enforce "login" for working with TopSpin is disabled, you are not prompted to login after TOPSPIN startup. You can, however, still login as internal user with the command `login`.

18.3.5 Locking TOPSPIN's Graphical User Interface

TOPSPIN can be locked, such that it does no longer accept user input via mouse or keyboard. To do that:

+ enter `lockgui` on the command line

or

+ Click Options => Administration => Lock TopSpin user interface

A window will appear (see Fig. 18.6) indicating the locked status and offer-
ing buttons to unlock.

Only the current user or the NMR Administrator can unlock the user interface. While TOPSPIN is locked, all background activities such as data acquisition and processing continue.

For safety reasons TOPSPIN can be forced to execute `lockgui` automatically when no commands from the command line, menus or toolbar buttons have been entered for a certain period of time (for instance because the current user has left). In order to enable automatic locking

1. Click *Options* \Rightarrow *Preferences* [set]
2. Click *Administration Items* in the left part of the dialog box.
3. Click the *Change* button to the right of the object *Automatic locking of TopSpin when idle time exceeded*.
4. Enter the maximum allowed idle time (in minutes) in the dialog and click *OK*.

![Figure 18.6](image-url)
Chapter 19
Remote Control

19.1 Remote control

TOPSPIN supports remote control. This means, for example, that you can control your spectrometer from any PC in the laboratory network or, over the internet, from your PC at home. Using your local TOPSPIN interface, you have access to the remote data directories and remotely running TOPSPIN commands. Furthermore, in TOPSPIN 1.3 and newer, ICON-NMR is web-enabled which means it can be controlled from any web browser which is networked to the spectrometer. Note that remote access is operating system independent.

19.2 How to Establish a Remote Connection from your PC

In order to establish a remote connection, you have to perform a few steps, both on the local and on the remote system. Note that the local system is the computer you are sitting at, and the remote system is the computer you are connecting to. Up to 5 local systems can connect to TOPSPIN on a remote system.
19.2.1 Setup the remote system

The remote system must be enabled for remote access and, furthermore, individual data directories must be exported.

Enable the system for network access

1. Log in on the remote system
2. Start TOPSPIN
3. Click Options --> Preferences [set]
4. Click Miscellaneous in the left part of the dialog box.
5. Click the Change button to the right of the object Configure remote access.
6. Enter the Administration password as requested
7. In the appearing dialog box (see Fig. 19.1):
 a) Click Remote Access Enabled
 b) Click Add and enter the data directories that you want to export for remote access, e.g.: C:\bio and click OK.
 c) Click OK to close the dialog.
8. Click **OK** to save and close the preferences dialog.

9. Restart **TOPSPIN**.

A list of exported directories is stored in the file:

 `<tshome>/prog/server/export.conf`

Now a running **TOPSPIN** on this system can be accessed from any computer in the network.

Identify the port number

To identify the TCP/IP port number used by **TOPSPIN**:
1. Start TOPSPIN
2. Enter hist
3. Look for the line

To connect to this TOPSPIN use host=<xxxx>, port=<yyyy> in the upper part of the dialog window. The number at the end of this line (<yyyy>) is the desired port number, which must be used to set up the local system (see chapter 19.2.2). By default, this is port number 5500. Only if this port is already used by a program other than TOPSPIN, a different port is used.

19.2.2 Setup the local system

Define the remote system

1. Log in on the local system
2. Start TOPSPIN
3. Click Options --> Preferences [set].
4. Click Miscellaneous in the left part of the dialog box.
5. Click the Change button at the entry Setup remote systems. In the appearing dialog (see Fig. 19.2),

![Server ID](leda)

![Hostname or address](leda/software.bruker.de)

![TCP/IP port number](5500)

Figure 19.2

enter the following information:

- Server ID: an arbitrary name for the remote system
- Hostname or address: the hostname or IP address of the remote host
- TCP/IP port number of the remote TOPSPIN as identified in chapter 19.2.1.
6. Click *Add* to add the remote host.

7. Click *OK* to save the changes and close the dialog.

Note that you can define multiple remote systems, for example different spectrometers in your laboratory.

Connect to the remote system

1. Click *Options => Remote connection...*

2. Select the desired *Remote system* from the appearing dialog box and click *OK*.

![Connect dialog box](image)

Figure 19.3

Now you are prompted for a user and password (*both case sensitive*) on the remote computer.
The TOPSPIN browser will show the exported data directory trees of the remote system. You are now ready to acquire, process or analyse remote data.

19.2.3 Setup the firewall

A remote system in a network can be protected by a firewall. Any firewall between the local and remote TOPSPIN must be configured for TOPSPIN remote access.

If the remote PC is running under Windows XP with Service Pack 2 or higher, the Windows Firewall is, by default, installed and running. Consider the following possibilities:

Firewall on PC with Windows XP-SP2 or higher, Topspin installed

If TOPSPIN is installed, the firewall is probably configured for TOPSPIN remote access. If it is not or you are not sure, you can configure it as follows:

1. Click Start => Programs => Bruker TOPSPIN =>

1. During TOPSPIN installation, you can choose to automatically configure the firewall or not. PC’s delivered by Bruker Germany, always have the firewall configured for TOPSPIN.
TOPSPIN <version> => Bruker Utilities

2. Click Miscellaneous
3. Double click Command Prompt
4. In the Command Prompt window, enter:
 `cd prog\bin\utilities\Miscellaneous\setfirewall.cmd auto`

Firewall on PC with Windows XP-SP2, no Topspin installed

Configure the firewall as described in the Installation Guide for Windows XP.

On all other systems, the firewall must be configured manually by the network administrator. To do that view the file:

`<tshome>/prog/server/corba.conf`

and open the ports specified here, incremented by 50.

For more information, please refer to the installation guides for Windows or Linux or inspect the contents of the file `corba.conf`.

Note that the firewall must be configured for TOPSPIN:

- spectrometer control
- remote access

TOPSPIN can be used for processing/analysis on a local datastation, even if it is not registered on the firewall. However, you will get a few Security Alert messages during startup.

19.3 How to Make a Remote Connection without a Local License

TOPSPIN requires a license to operate on your local computer. However, you can make a remote connection without a local license.

To do this, you have to start TOPSPIN as follows:

1. Open a Windows Command Prompt or Linux Shell.
2. Go to the TOPSPIN installation directory.
3. Enter `topspin -client`
4. TOPSPIN will start up and show an empty data field but no browser. Before startup you will get the error message: "The program failed to communicate with local". Just click OK to continue.

5. Click Options => Remote connection...
 and establish a remote connection as described in chapter 19.2.

Note that without a local license:
- TOPSPIN on the remote system must run with a licence.
- Local data cannot be accessed.

19.4 Security of Remote Connections

All data transferred during a remote control session is, by default, encrypted. This ensures that nobody can see data or commands by observing and recording your network traffic. TOPSPIN uses the Secure Socket Layer (SSL) technology for encryption, which is also used for secure web sites. SSL needs digital certificates on both sides of a connection to achieve a valid authentication. After a TOPSPIN installation, default certificate files are provided to secured connections. There is a chance, however small, such connections are attacked by a malicious person who also has the same default certificate files. If, for this reason, you want to create your own set of certificate files, you can do this by executing a script that is installed in <tshome>/prog/server/make_new_certificates and follow the instructions given there. To start a remote connection, the new certificate files must be installed on BOTH machines.

19.5 How to Access ICON-NMR from a Remote Web Browser

In TOPSPIN 1.3 and newer, ICON-NMR is web-enabled. The standard Bruker Automation Software now provides a built-in website which can be activated to allow remote access to ICON-NMR from any web browser which is networked to the spectrometer workstation. Experiments may be cancelled/submitted, the run may be paused or halted and spectra in PDF format are available from the browser window. No additional software apart from ICON-NMR and Webbrowser is required and configuration is performed via the standard ICON-NMR Configuration window. For security a SSL/HTTPS connection is supported. Pocket PC Internet Explorer is also
supported for full spectrometer control via Windows Mobile 2003 (TM) or equivalent. PDF files of spectra may also be viewed on this platform making the mobile pocket spectrometer a reality.

The configuration of ICON-NMR web interface is described in the ICON-NMR manual, accessible Help => Manuals => [Automation and Plotting] Icon-Nmr Automation Interface. Note that ICON-NMR remote control does not require and is fully independent of TOPSPIN remote control.

19.6 How to limit IP-Addresses for Remote Control

TopSpin offers the possibility of limiting the IP Addresses for remote control, in order to permit more security for all spectrometer control. This feature is especially useful for big companies and concerns that work with different NMR spectrometers and many members of staff, respectively many PCs.

Please note that the functionality of limiting IP Addresses is a feature for technical experienced users and IT-Experts, therefore the following description is given by an example.

By default remote connection is disabled. You have to enable remote control first. For enabling remote control and limiting the IP Addresses the following file has to be edited:

```
<tshome>/prog/server/omniorb.conf
```

In this file you have to search for the following section which enables every IP-Address for remote connection:

```
"To enable the Remote Connection feature using SSL encryption the '#' character at the beginning of the next line should be removed:

#serverTransportRule = 0.0.0.0/0.0.0.0 ssl".
```

After removing the '#' an unlimited number of IP-Addresses may use remote control. The IP-Address can be limited as it is shown in the following example by editing the respective IP-Address line:

```
serverTransportRule = 149.236.14.0/255.255.255.0 ssl
```

After editing the IP Addresses belonging to your special requirements,
every IP Address of the permitted subnet may use the feature remote control and all other addresses have no longer permission to connect remotely.
Chapter 20
User Preferences

20.1 User Preferences

TOPSPIN can be tailored to your preference in many respects. This ranges from startup options to spectrum objects, menu settings, remote connections etc. Every standard user can create his/her own set of preferences.

To set user preferences:

- Click *Options => Preferences [set]*

A dialog box will appear with, at the left side, the categories that can be tai-
Click the category of which you want to view/change certain objects. It will become highlighted and the corresponding objects will be displayed at the right part of the dialog box. For example, if you click *Spectrum*, the spectrum objects will appear at the top of the dialog box. The rest of this paragraph will describe some examples of setting various user preferences.

20.1.1 Define User Preferences Location for all Users

User Preferences are, by default, stored in the current users home directory:

```
<userhome>/.topspin-<hostname>
```

During the first TOPSPIN session, files with default settings are created there. They can then be modified with the `set` command and used in later sessions.

You can, however, also store user preferences at one central location,
which are then used by all users. This location can even be a remote drive allowing you to use the same preferences on all computers in the network.

To do that:

1. Make a backup copy of the file \texttt{<tshome>/javaenv.cmd}.
2. Open the file \texttt{<tshome>/javaenv.cmd} using a text editor.
3. Locate the line \\
 \texttt{"set SYSTEM_PROPS=-DXWIN-NMRHOME="\%XWINNMRHOME\%" -DCOMPUTERNAME=\%COMPUTE........."} near the beginning of the file.
4. Append a white space character and then:
 \texttt{-DPROPDIR=<dir>}
 to the end of this line, where \texttt{<dir>} is the definition of the storage directory, consisting of one or more parts (see below)
5. Close the editor.

The definition of the storage directory for User Preferences can take three forms:

- \texttt{-DPROPDIR=<mydir>}
 Stores the user properties in \texttt{<mydir>/prop}
 Example: \texttt{-DPROPDIR="/x y z" 1}

- \texttt{-DPROPDIR=<mydir> USER 2}
 Stores the user properties in \texttt{<mydir>/<login id>/prop}, where \texttt{<login id>} is the id under which the user is logged into the operating system
 Example: \texttt{-DPROPDIR="/x y z USER" 1}

- \texttt{-DPROPDIR=CURDIR}
 Stores the user properties in \texttt{<tshome>/prog/curdir/<login id>/prop}, where \texttt{<login id>} is the id under which the user logged into the operating system

Please note that the specified directory must writable for all TOPSPIN users.

1. The double quotes are only required if the directory contains white spaces
2. Specify exactly 1 space between the pathname and the string \texttt{USER}
20.1.2 **TOPSPIN Startup Actions**

How to Open the Last Used Dataset on Startup
1. Click *Options => Preferences* [set].
2. Check, under *Administration items*, the option :

 Auto-open last used data set when restarting TopSpin

How to Define the Startup Actions

TOPSPIN allows you to define any commands to be executed automatically after startup. To do that:

1. Click *Options => Administration => Edit Startup File*.
2. Enter the desired startup command(s), in the appearing editor, for example:

   ```
   re exam1d_13C 1 1 c:\bio guest
   efp
   apk
   abs
   ```

 The above lines would cause TOPSPIN to display the dataset:

   ```
   C:/bio/data/guest/nmr/exam1d_13C/1/pdata/1
   ```

 and execute the command *efp, apk* and *abs* on it.

 Note that you can use a single forward slash (/) or a double backslash (\) as path separator.

 Note that in TOPSPIN 2.1 and newer, the file `autostart.mac` is a regular Topspin macro. In older versions, however, the file `autostart.prop` was used with a different format.

How to Define Auto-Termination after Idle Time

TOPSPIN can be configured to be terminated after a user specified idle time. To do that:

1. Click *Options => Preferences* [set].
2. Click the *Change* button to the right of the object
Automatic termination of TOPSPIN when idle time has exceeded

enter the NMR Administration password as requested and enter the number of minutes of allowed idle time.

3. Click OK to close the dialog, click OK to close the Preferences dialog.

4. Restart TOPSPIN to activate the change.

If the user does not execute any commands (from the command line, menu or toolbar buttons), a dialog will appear with an OK button (to terminate immediately) and/or Cancel button (to continue).

Automatic termination frees the license used by this TOPSPIN instance for other users. This solves the problem of users leaving TOPSPIN open and blocking a floating license although they do not currently use it.

How to Define Auto-Locking after Idle Time

TOPSPIN can be configured to lock the interface after a user specified idle time. To do that:

1. Click Options => Preferences [set].

2. Click the Change button to the right of the object

 Automatic locking of TOPSPIN when idle time has exceeded

 enter the NMR Administration password as requested and enter the number of minutes of allowed idle time.

3. Click OK to close the dialog, click OK to close the Preferences dialog.

If the user does not execute any commands (from the command line, menu or toolbar buttons), the TOPSPIN interface will be locked (see Fig.
How to Change the Preferred Editor

You can choose your preferred editor as it is used by commands like `edau`, `edpul`, `edcpd` etc. To do that:

1. Click *Options* => *Preferences* [set].
2. Click *Miscellaneous* in the left part of the dialog box.
3. Click the *Change* button to the right of the object *Preferred text editor*
 enter the desired Editor and its path. For example for Wordpad under Windows 2000/XP, this would look like:
4. Click *Save* to save the changes.

If no editor is specified here, the TOPSPIN internal editor is used. If the file being edited is read-only, the TOPSPIN internal viewer is used.

How to Configure the Tab Bar

The default Tab bar at the top of the data window consist of Tabs to switch between various dataset objects like *Spectrum, Parameters, Title*, etc. You can, however, configure the Tab bar to contain Tabs for interactive data manipulation like *phase correction, integration* etc. These Tabs have the same function as the corresponding buttons in the upper tool bar (see chapter 2 and 14) but are easier to access. You can configure the Tab bar as follows:

1. Click *Options => Preferences*
2. Click *Spectrum* in the left part of the *User preferences* box.
3. Click the *Change* button to the right of the object *Tabbed pane layout*.
4. Check the desired Tabs, uncheck the others.
5. Click *OK*

Note that you can change the relative positions of a Tab by selecting it and then clicking the *Up* or *Down* button.

How to Configure the Right-click Menu Function

Right-clicking a pull-down or popup menu, can perform various actions. This can be configured as follows:

1. Right-click an empty part of the menubar and choose *Define Right-...*
Click Action from the popup menu.

![Figure 20.3](image)

2. In the appearing dialog (see Fig. 20.3), select the desired action.
3. Click OK

20.1.3 Changing Colors

How to Change Colors of Data Objects on the Screen

The color of various objects in a data window on the screen, like 1st, 2nd, and 3rd spectrum, axis, parameters etc. can be changed. To set these colors:

1. Click Options’ Preferences [set].
2. Click Spectrum in the left part of the User preferences box.
3. Click the Change button to the right of the object you want to change e.g.:

![Color of 1st 1D spectrum](image)

4. Select the desired color in the appearing dialog box and click OK
5. Click Apply

How to Change Colors of Data Objects on the Printer

The color of data objects on the printer is independent from the color of the
corresponding object on the screen. To set print colors:

1. Click *Options* ‹*Preferences* [set].
2. Click *Printer* in the left part of the *User Preferences* box.
3. Click the *Change* button to the right of the object you want to change, e.g.:

 ![Color of title](image)

4. Select the desired color in the appearing dialog box and click *OK*
5. Click *Apply*

How to Change Colors of the Lock Display

The colors of lock display objects can be changed as follows:

1. Click *Options* ‹*Preferences* [set].
2. Click *Lock display* in the left part of the *User preferences* box.
3. Click the *Change* button to the right of the object you want to change, e.g.:

 ![Color of title](image)

4. Select the desired color in the appearing dialog box and click *OK*
5. Click *Apply*

How to Create a New Data Window Color Scheme

To create a new data window color scheme:

1. Click *Options* ‹*Preferences* [set].
2. Change any color of the objects *Spectrum, Spectrum title, Spectrum cursor* or *Spectrum parameters*.
3. Click *Apply*
4. Click *Spectrum* in the left part of the *User preferences* box.
5. Click the button *Save as...* to the right of the object:

 Save spectral window colors as a new color scheme

and enter a new name in the appearing dialog box.
6. Click \textit{OK}

\textbf{How to Read a Different Data Window Color Scheme}

1. Click \textit{Options \Rightarrow Preferences \{set\}}.
2. Click \textit{Spectrum} in the left part of the \textit{User preferences} box.
3. Click in the list box to the right of the object:
 \begin{quote}
 \textit{Change spectral window color scheme}
 \end{quote}
 and select an element from the appearing list.
4. Click \textit{OK}

\textsc{TOPSPIN} is delivered wit two colors schemes:
\begin{itemize}
\item \textit{light} (default): a white background with black axes
\item \textit{dark}: a dark blue background with a white axes
\end{itemize}

\textbf{How to Change Peak and Integral table Colour/Spacings}

1. Click \textit{Options \Rightarrow Preferences \{set\}}.
2. Click \textit{Miscellaneous} in the left part of the \textit{User preferences} box.
3. Click in the list box to the right of the object:
 \begin{quote}
 \textit{Table colors} (see Fig. 20.4)
 \end{quote}
 for simple tables like peaks, solvents, nuclei tables
 \begin{quote}
 \textit{Tree table colors}
 \end{quote}
User Preferences

for nested lists like the integral table.

Set the desired colours and spacings.

4. Click **OK**

Note that table colours and spacings can also be changed from a table. To do that, right-click any table entry and choose *Table properties...*
20.1.4 Changing Lines

How to Create Thick Lines on the Screen
To create thick (double width) lines for high resolution display or screen-dumps:
1. Click Options => Preferences [set].
2. Click Spectrum in the left part of the dialog box.
3. Enable the entry Use thick lines
4. Click OK

How to Create Thick Lines on the Printer
To create thick (double width) lines for high resolution display or screen-dumps:
1. Click Options => Preferences [set].
2. Click Printer in the left part of the dialog box.
3. Enable the entry Use thick lines
4. Click OK

20.1.5 Changing Fonts

How to Change All Fonts of the Topspin Interface
1. Click Options => Preferences [set].
2. Click Fonts/Dials/Icons in the left part of the dialog box.
3. Set the entry Change size fonts listed above by points
 You can enter a positive or negative number.
Fig. 20.5 shows an example of increasing the font sizes by 4 points.

FIGURE 20.5

4. Click OK to store the new value.

FIGURE 20.6

Fig. 20.6 shows the same part of the Preferences dialog box after the change of fonts. Note that:

- The value of all font entries has been increased by 4.
- The font of the dialog box itself is larger.
- The change size has been reset to 0.

How to Change the Font of the TOPSPIN menu

To change the font of the TOPSPIN menu:

1. Click Options => Preferences [set].
2. Click *Fonts/Dials/Icons* in the left part of the dialog box.
3. Click the *Change* button to the right of the *Menu font* object:

<table>
<thead>
<tr>
<th>Menu font</th>
<th>dialog/Plain/18</th>
<th>Change</th>
</tr>
</thead>
</table>

4. Select the desired *name*, *style* and/or *size* in the appearing dialog box.
5. Click *OK* to store the new font.
6. Click *Apply*

The default menu font is *Dialog/Plain/18* and looks like this:

Figure 20.7 and *Figure 20.8* shows a Tab bar with font size 10 and 14 respectively.

How to Change the Font of the Tab bar

1. Click *Options* => *Preferences* [*set*].
2. Click *Fonts/Dials/Icons* in the left part of the dialog box.
3. Click the *Change* button to the right of the *Spectrum TABS font* object.
4. Select the desired *name*, *style* and/or *size* in the appearing dialog box.
5. Click *OK* to store the new font.
6. Click *Apply*

Fig. 20.7 and Fig. 20.8 shows a Tab bar with font size 10 and 14 respectively.

*Spectrum| ProoPas| AcquPas| Title| PulseProg| Peaks| Integrals| Sample| Structure| Fid

Figure 20.7 Tab bar with font size 10
How to Change the Font of Dialog Boxes

1. Click *Options* => *Preferences* [set].
2. Click *Fonts/Dials/Icons* in the left part of the dialog box.
3. Click the *Change* button to the right of the *Dialog window font* object.
4. Select the desired *name, style* and/or *size* in the appearing dialog box.
5. Click *OK* to store the new font.
6. Click *Apply*

Fig. 20.9 shows an example of a dialog box with the font *Times New Roman Italic*

How to Change the Font of the Browser

To change the font of the browser:

1. Click *Options* => *Preferences* [set].
2. Click *Fonts/Dials/Icons* in the left part of the dialog box.
3. Click the *Change* button to the right of the *Dialog window font* object.
4. Select the desired *name, style and/or size* in the appearing dialog box.
5. Click *OK* to store the new font.
6. Click *Apply*

TOPSPIN must be restarted for this change to become effective. Note that this change will affect all dialog boxes.

How to Change the Font of the Command Line

1. Click *Options => Preferences [set].*
2. Click *Fonts/Dials/Icons* in the left part of the dialog box.
3. Click the *Change* button to the right of the *Command line font* object.
4. Select the desired *name, style and/or size* in the appearing dialog box.
5. Click *OK* to store the new font.
6. Click *Apply*

How to Change the Font of the Status Line

1. Click *Options => Preferences [set].*
2. Click *Fonts/Dials/Icons* in the left part of the dialog box.
3. Click the *Change* button to the right of the *Status line font* object.
4. Select the desired *name, style and/or size* in the appearing dialog box.
5. Click *OK* to store the new font.
6. Click *Apply*

20.1.6 Changing Acquisition settings

How to Auto-Archive existing expnos

1. Click *Options => Preferences [set].*
2. Click *Acquisition* in the left part of the dialog box.
3. Click the Change button to the right of the item *Configure Accounting & Data Archiving after ’zg’* (see Fig. 20.10).
4. In the appearing dialog (see Fig. 20.11), configure archiving as
described in the dialog.

5. Click **OK**.

20.2 Command Line Preferences

How to Resize the Command Line

By default, the TOPSPIN command line shows one command, the com-
mand that is currently entered, e.g.:

```
apk
```

However, you can resize the command line to show the currently entered command plus the last and second last command, e.g.:

```
em
ft
apk
```

You can toggle between the two different command line sizes as follows:

- Click **View => Resize command line**

 or

- Right-click in the command line and click **Resize command line**

How to Set the Minimum and Maximum Command Line Size

By default, the size of the command line can be toggled between 1 and 3. You can, however, change this minimum and maximum value, respectively. To do that:

1. Click **Options => Preferences [set]**.
2. Click **Fonts/Dialogs/Icons** in the left part of the dialog box.
3. Specify the **Minimum visible command lines (> 0)**.
4. Specify the **Maximum visible command lines (≥ Minimum visible)**.
5. Click **Apply**

20.3 Disabling/Enabling Toolbar Buttons, Menus and Commands

How to Hide the Upper and Lower Toolbars

Right-click in an empty area of one of the toolbars and choose:

Hide the toolbars
from the appearing popup menu (see Fig. 20.12).

To restore the toolbars:

+ press the keys SHIFT+ESC

![User Preferences](image)

How to Hide the Menubar

Right-click in an empty area of the Menubar and choose:

Hide the menubar

from the appearing popup menu.

To restore the menubar:

+ press the keys SHIFT+ESC

How to Disable/Remove Toolbar Buttons

Buttons of the upper or lower toolbar can be disabled or removed as follows:

1. Right-click a toolbar button.
2. Choose one of the entries:
 + *Make this button invisible* to remove the button from the toolbar
 + *Make this button inactive* to disable the button (it will appear greyed)

To restore the complete toolbars, click:
Reactivate all invisible or inactive buttons to restore the default toolbar

How to Disable/Remove Menus or Commands

By default, all existing TOPSPIN commands can entered from the menu and/or from the command line. You can, however, selectively disable/remove commands or menus. This is typically done by system administrators who want to disable certain functions for standard users.

Open the Menu Configuration table as follows:

1. Click Options => Preferences [set].
2. Click Fonts/Dialgs/Icons in the left part of the dialog box.
3. Click the Change button of the entry Disable/Enable menus and commands.

The table consists of the following columns:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Menu</th>
<th>Status</th>
</tr>
</thead>
</table>

You can disable/remove:

- **Menus**, e.g. *Options*
 to be found in the column **Menu**
- **Sub-menus**, e.g. *Options => Administration tools*
 to be found in the column **Menu**
- **Menu entries**, e.g. *Options => Preferences*
 to be found in the column **Description**
- **Commands**, e.g. *set*
 to be found in the column **Command**

Note that in this configuration table, each menu entry corresponds to a certain command. In the TOPSPIN menu, most commands are indicated in square brackets behind the corresponding menu entries, e.g.:

+ *Processing => Fourier transform* \([\text{fft}]\)

Menu entries which are not used very often appear without the corre-
sponding command indicated, e.g.:

+ **Options** => **Preferences**

However, if you want, you can look up the corresponding command, in this case `set`, in the configuration table and use it.

As an example, we will describe how you can disable/remove the menu entry **Remote connection**.. in the **Options** menu:

1. Open the configuration table as described above.
2. Scroll to the **Description Remote connection**
3. Set the **Status** to **disabled**.
4. Click **Apply**

Clicking the TOPSPIN **Options** menu, will now show the following popup menu:

![Options Menu]

The entry **Remote connection**.. is greyed and can no longer be used.

Go back to the Configuration table, change the **Status of Remote connection...** to **invisible** and click **Apply**.

Clicking the TOPSPIN **Options** menu, will now show following popup menu:

![Options Menu]

The entry **Remote connection**.. has disappeared.

Note that if you disable or remove a *menu entry*, the corresponding *command* is automatically disabled. For example, if you disable:
+ Analysis => Deconvolution \([\text{dcon}]\)

entering \(\text{dcon}\) on the command line will lead to an error message.

How to (Re)enable a disabled Command/Menu
1. Open the Menu Configuration table as described above.
2. Set the Status of a disabled or removed (invisible) entry to enabled.
3. Click \texttt{OK} to close the Configuration table.

How to (Re)enable All Commands/Menus
1. Open the Menu Configuration table as described above.
2. Click the \texttt{Reset} button to enable all menus and commands.
3. Click \texttt{OK} to confirm the appearing message.
4. Click the \texttt{OK} button to close the Configuration table.

20.4 Resizing/Shifting Toolbar Icons

How to Change the Toolbar Icon Size
1. Right-click of any part of the toolbar,
2. In the appearing popup menu (see Fig. 20.13), click:
 + \textit{Change Icon Size...}

 ![Figure 20.13](image)

 Figure 20.13

3. Enter the icon size in the appearing dialog and click \texttt{OK}.

How to Shift Toolbar Icons to the Right
1. Right-click of any part of the toolbar.
2. In the appearing popup menu (see Fig. 20.13), click:

+ _Change Toolbar Offset_

3. Enter the toolbar offset in the appearing dialog and click **OK**.

20.5 Defining Source Directory for Programs/Lists etc.

TOPSPIN 2.1 and newer allow you to define the source directories for pulse programs, AU programs, integral ranges, various lists etc. In TOPSPIN 2.0 and older, the source directory for these items was fixed: `<tshome>/exp/stan/nmr`. Now you can define an individual source directory for each item. To do that:

1. Open the dialog of any of the items, e.g. with the command `edau`, `edlist` or `edmisc`.

2. Click **Options** => **Manage Source Directories**

A dialog will appear showing a list of items with the current source directories. By default, two source directories are present, one for user defined items and one for Bruker items. This list can be modified or extended with your preferred source directories, e.g.:

C:\my-pulse-programs\
C:\ts21\exp\stan\nmr\lists\pp\user
C:\ts21\exp\stan\nmr\lists\pp
C:\ts21\exp\stan\nmr\lists\cpd\user
C:\ts21\exp\stan\nmr\lists\cpd

Figure 20.14
You can do this for each item separately. Items will be searched for in the order of the directories specified.
Chapter 21
User Extensions

TOPSPIN offers various ways to extend the standard commands, buttons, programs etc.

21.1 User Notebook

You can create your own user specific notebook with the command:

+ View => Notebook [nbook]

Figure 21.1

This can be used to store and retrieve any personal notes, information etc.
21.2 Macros

A macro contains a sequence of TOPSPIN commands. It can be created with the command `edmac`. A simple macro for processing and plotting the current dataset is:

```plaintext
em
ft
apk
sref
autoplot
```

All entries in a macro file must be written in lower case letters.

In TOPSPIN 1.3 and newer, a macro may contain Python commands. Any line in a macro that starts with:

```plaintext
py>
```

executes a Python command. An example of such a macro is:

```plaintext
re examld_13C 1 1 C:\bio guest
efp
py>NEWWIN() # open new window
re examld_1H 1 1 C:\bio guest
efp
py>x = INPUT_DIALOG()
py>if x == None: EXIT()
py>y = 2* int(x[0])
py>MSG("done: y=" + str(y))
```

Note that commands like `NEWWIN()`, `INPUT_DIALOG()`, `MSG()` and `EXIT()` are Bruker defined whereas "x=" and "if" are original Python commands.

Once created, a macro can be executed by entering its name on the command line.

21.3 AU Programs

An AU program may contain TOPSPIN commands, AU macros and C-language statements. It can be created with the command `edau`. A simple AU program which performs the `efp` command on a series of dataset `expno`'s is:

```plaintext
```
A Python program may contain TOPSPIN commands, User Interface functions and Graphic functions. It is created with \texttt{edpy}.

The Python program below reads a region of the real part of a spectrum and the corresponding region of the imaginary part and displays both. The simplest form of \texttt{DISPLAY_DATALIST} is used.

```python
from TopCmds import *
import math
region = [80, 72] # define region in ppm
```
open testdata, don't display
testdata = ["exam1d_13C", "1", "1", "c:/Bruker/topspin", "guest"]
RE(testdata, "n")
read real and imaginary points of the region
reals = GETPROCDATA(region[0], region[1])
imags = GETPROCDATA(region[0], region[1], data-const.PROCDATA_IMAG)
if reals == None or imags == None: EXIT()
set up list of data to be displayed and respective axis info list
dataList = [reals, imags]
display the data in the list
DISPLAY_DATALIST(dataList)

For more information on writing Python program:

+ Click Help => Manuals => [Programming Manuals] Python program-
mapping

21.5 Button Panels

A button panel is a window with user-defined buttons for executing TOPSPIN commands, AU programs, Python programs or macros. It appears as an integral part of the active data window and acts on that Bruker delivers a few standard button panels like `bnmr` and `bnmrsel`. To create your own button panels, you can modify one this or write one from scratch.

In this description we will create a very simple button panel with some 1D processing commands and print/export buttons (see Fig. 21.2)
To write this button panel, take the following steps:

1. Open the Windows Explorer and navigate to the subdirectory
 userdefined
 of the users properties directory ¹.

2. Create a text file with the name
 .cmdpanel_<name>.prop
 where <name> is the name of the button panel.

3. Enter the button definitions including Panel title, Colors, Toggle buttons,
 Top buttons, Panel layout, Panel buttons and Tooltips.

4. Save the file under a name.cmdpanel_<xxx>.prop
 where <xxx> is the actual name of your command panel.
 Make sure the extension of the file is .prop and not .txt,
 .prop.txt or anything else.

5. Enter bpan <xxx> on the command line to open the button panel.

Here is an example for a small button panel for 1D processing:

```
# Color definitions used in this file (RGB)
BLUE1=51$ 204$ 255
YELLOW1=255$ 255$ 0
GREEN1=84$ 196$ 20

# Title definition
TITLE=1D Processing Panel
TITLE_COLOR=0$ 0$ 255

# Toggle button definition
TOGGLE_BUTTON=To 2D
TOGGLE_CMD=bpan bproc2d
TOGGLE_TIP=Switch to 2D processing

# Top row button definition
TOP_BUTTONS=EM$ $FT$ $PK$
```

¹. To locate this, enter hist and look for the entry "User properties directory=".
TOP_COLORS=YLW$ YLW$ YLW$ YLW$
TOP_CMDS=em$ ft$ pk
TOP_TIPS=Exponential multiplication \
Fourier transform$\
Phase correction

Panel button definitions

LAYOUT format: rows columns hgap vgap
PAN_LAYOUT=1$ 3$ 8$ 8

PAN_BUTTONS=Print$ EXPORT$ SEND TO$
PAN_COLORS=BLU1$ BLU1$ BLU1
PAN_CMDS=prnt$ exportfile$ smail
PAN_TIPS=Print the spectrum

as it appears on the screen$\
Export the dataset

to png, jpg, bmp etc.$\
Send the dataset by email

If you type **bpan exam**, a panel with 75 buttons will appear: 5 rows and 15 columns. The corresponding panel file is called `cmdpanel_exam.prop`, which resides in the directory:

 <tshome>/classes/prop/English

In the same directory, you can find the files `cmdpanel_bnmr.prop` and `cmdpanel_bnmrsel.prop`, which are used to display the `bnmr` and `bnmr-sel` panel described above.

The texts displayed on the buttons can be graphically adjusted in various ways, because the text may optionally be specified in html format. In the example above, the PAN_BUTTONS property has no html tags, therefore the texts are displayed in black using the default TOPSPIN Dialog window font as specified in the User Preferences (command **set**). If you replace the text **Print** by the following:

 <html>Print
Now</html>

then the new text "Print Now" is displayed in green (the color to be specified in RGB hex code), with 10 points font size. Also, "Now" is display below "Print" due to the html
 (= break line) tag.

Note that:
User Extensions

- The *Close* button and *Tips* switch are automatically created. You don’t need to specify them.
- The TOGGLE button is typically, but not necessarily, used to call another button panel. In this example it calls the panel `bproc2d`. If TOGGLE_BUTTON is specified without a value, i.e. the entry is "TOGGLE_BUTTON=" instead of "TOGGLE_BUTTON=action text", the corresponding button is not shown in the panel.
- Items must be separated with the "\$" character, button items with "\$\$"
- A "\" followed by "end of line" continues an item on the next line.
- Tooltips may use html tags for text formatting.
- Commands may be specified as single commands like "em" or as composite commands like "em\nft\npk". Note that in the latter case, the commands must be separated by "\n".
- When the `bpan <name>` command comes up with an error message, carefully check the syntax of your cmdpanel file. A common mistake is to specify the button items incorrectly. With the keyword PAN_LAYOUT you define the number of rows and columns, and the number of items will become rows*cols. All specifications such as PAN_BUTTONS, PAN_COLORS, etc. must have this number of members, otherwise you will get some kind of TOPSPIN error. Please insert the "\$" separator to make sure the item count is correct.

21.6 Adding User Defined Buttons to the Toolbars

The upper and lower toolbar at the top of the TOPSPIN window can be extended with user defined buttons. They can be assigned to any TOPSPIN command, macro, AU program or Python program.

To create a user defined button, take the following steps:

1. Right-click at an empty area of the toolbar.
2. In the appearing popup menu, click:
Add User-Defined Button

<table>
<thead>
<tr>
<th>Reactivate All Invisible/Inactive Buttons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add User-Defined Button...</td>
</tr>
<tr>
<td>Change Icon Size...</td>
</tr>
<tr>
<td>Change Toolbar Offset...</td>
</tr>
<tr>
<td>Hide Toolbars (type SHIFT ESC to reset)</td>
</tr>
</tbody>
</table>

3. In the appearing dialog box (see Fig. 21.3)
 a) Choose between the options **text label** or **icon**
 The corresponding parameters are enabled/disabled.
 b) Enter the **command name**, the **tool tip** and the **label text** or **icon file path**
 c) For a text label: set its **font**, **text color** and **background color**.
 d) For an icon label: specify the icon image filename
 e) Set the **separator** flag to **yes** or **no** and select the data **dimension(s)**
 for which the button must appear.

For an icon label, you must stored the icon image file in one of the following directories:

- `<user-home>/topspin-<hostname>/prop/userdefined` (only available for this user)
- `<tshome>/classes/prop` (available for any user)
- any directory (the full pathname must be specified in the icon label field)

The formats `.gif`, `.jpg`, `.jpeg` and `.png`, are supported. Standard TOPSPIN toolbar icons have a size of 16 * 16 pixels. If your own icons have a different size, they are automatically rescaled and displayed at the standard size.
In the example above, a button FT is created with a separator, which only appears for 1D datasets, and executes the command ft.

How do I Remove a User Defined Toolbar Button

Right-click the toolbar button and click:

Remove this user-defined button...

in the appearing popup menu (see Fig. 21.4).

How do I Shift a User Defined Toolbar Button to the left/right

Right-click the toolbar button and click:

Shift left

or

Shift right
in the appearing popup menu (see Fig. 21.4).

![Figure 21.4](image)

The button definitions are stored in the file `toolbar_user.prop` which resides in the subdirectory `userdefined` of the user properties directory. To locate this directory enter the TOPSPIN command `hist`. A dialog box will show the contents of the `history` file. Near the top of this file, you will see an entry "User properties directory=".

For icon image buttons, the formats `.gif`, `.jpg`, `.jpeg` and `.png`, are supported. Standard TOPSPIN toolbar icons have a size of 16 * 16 pixels. If your own icons have a different size, they are automatically rescaled and displayed at the standard size.

21.7 Adding User Defined Menus to the Menubar

The menubar at the top of the TOPSPIN window can be extended with user defined menus. They can be assigned to any TOPSPIN command, macro, AU program or Python program. They are specific for the dimensionality of the active dataset.

To create a user defined menu, take the following steps:

1. Open a dataset of the desired dimensionality.
2. Right-click at an empty area of the menubar.
3. In the appearing popup menu, click:

 User_defined Menus

 ![User-Defined Menus]

4. In the appearing dialog box (see Fig. 21.5).
 a) Click Add Menu and specify the Menu Name in the appearing dialog.
 b) Click Add Menu Item and specify the Menu Item (menu entry) name and the corresponding Command in the appearing dialog.
 c) Click Apply.

![User-Defined Menus]

Figure 21.5

The new menu will appear in the menubar.

Furthermore the dialog box in Fig. 21.5 contains the following buttons:

- **Remove** : Remove menu names and/or menu items
• **Apply+Close**: Apply any changes and close the dialog box
• **Up/Down**: Move up/down the menu name list
• **Cancel**: Close the dialog box discarding any changes.

User defined menu definitions are stored in the file `umbar_menubar1d.prop`, `umbar_menubar2d.prop` or `umbar_menubar3d.prop` depending on the data dimensionality. These files resides in the subdirectory `userdefined` of the user properties directory. To locate this directory enter the TOPSPIN command `hist`.

21.8 Adding User Defined Guides

TOPSPIN offers several guides like the Acquisition Guide (command `aqguide`), the Processing Guide (command `prguide`) and the T1/T2 Guide (command `t1guide`). You can set up your own guides, which can be adaptations of Bruker guides or new written ones. In order to do that, you must edit the file `toolbar_user.prop` and `cmdtab_user.prop` in the directory:

```plaintext
<user properties directory>/userdefined/
```

To identify this directory, enter the command `hist` in TOPSPIN.

The file `toolbar_user.prop` contains the guide definition. If the file does not exist, it must be created. Here is an example of a user-modified T1/T2 guide.

```plaintext
MyT1T2Toolbar=\n NM=t1fid_40.gif, NM2=$Extract fid, TIP=$Do rser,\n CMD=_t1_fid, END=,\n NM=t1spec_40.gif, NM2=$Transform, TIP=$Do ef+apk,\n CMD=_t1_spec, END=,\n NM=t1ranges_40.gif, NM2=$Ranges, TIP=$Enter integ. mode,\n CMD=_t1_ranges, END=,\n NM=t1screen_40.gif, NM2=$Relax. Window, TIP=$Enter Relax mode, \n CMD=_t1_relax, END=,\n NM=-, END=,\n NM=myicon.gif, NM2=$Fit Methods, TIP=$Select fit funcs.,\n CMD=_t1_func, END=,\n NM=c:/myicons/myicon1.gif, NM2=$Start, TIP=$ct1,ct2, simfit,
```
CMD=_t1_start, END=,\nNM=c:/myicons/myicon2.gif, NM2=$Show Report, TIP=$report,
CMD=_t1_report, END=,\nNM=t1print_40.gif, NM2=$Print it, TIP=$print,
CMD=_t1_export, END=

Notes to this guide definition:

• The original Bruker guides are defined in the file toolbar.prop in the directory <tshome>/classes/prop. The corresponding commands are defined in cmdtab_main.prop in the same directory.
• The bold lines in the example above are user-modified lines.
• NM=t1fid_40.gif: a Bruker defined icon with a size of 40x40 pixels
• NM=myicon.gif: a user-defined icon, which must be located in the user properties directory (Caution: not in its subdirectory userdefined)
• NM=C:/myicons/myicon1.gif: a user-defined icon located C:/myicons. Using the absolute pathname allows you to store icons in an arbitrary directory.
• NM=-: indicates the start of the second icon column
• NM2=: the text to appear underneath of the icon. The $ sign is mandatory.
• CMD=: the command to be executed when the icon is clicked. This can be a regular TOPSPIN command, a macro or an AU or Python program.
• TIP=: the tooltip to be displayed when the cursor is held over the icon. Note that the $ sign is mandatory.

Before you can start a user defined guide, you must edit the file cmdtab_user.prop and define the corresponding command in the file, for example:

myt1guide=EM=J, MC=N, CL=tutor.TutStarter, ME=startTutorial, AR=MyT1T2Toolbar;My T1 T2 Tutorial=

Here:

• "MyT1T2Toolbar" is the toolbar identifier as it is used in the file toolbar_user.prop.
• "My T1 T2 Tutorial" is the title as it appears at the top of the guide.

If your guide is a Bruker modified guide, you can also redefine the original Bruker command, i.e. specify t1guide instead of myt1guide. Note that the original Bruker guide is then no longer accessible.

If you want to access a user defined guide from the TOPSPIN toolbar, you have to create a new toolbar button. To do that, right-click in an empty area of the toolbar and define a button in the appearing dialog.
Index

Symbols
*2 command 35, 42, 118, 159
*8 command 35, 118, 159
.2d command 34
.3d command 34
.all command 36, 119, 161
.basl command 215
.bmp files 25
.bzip files 27, 76
.cal command 205, 246
.co command 173
.dec command 194, 200, 217, 231
.dopt command 149, 150, 159, 312
.dx files 76
.emf files 25
.f1r command 161
.f2r command 161
.gif files 360, 362
.gr command 172
.hr command 36, 119
.hz command 145, 169
.im command 176
.inc command 194, 200, 217, 231
.int command 195, 233
.jpeg files 25, 360, 362
.jpg files 25, 360, 362
.keep command 36, 120, 161
.ls command 176
.lt command 178
.lv command 174
.md command 24, 207
.ov command 146, 169
.ph command 45, 191, 225
.ph180 command 193
.ph90 command 193
.phr command 193
.png files 25, 114, 360, 362
.pp command 220
.pr command 24, 170
.prop files 256
.ret command 194, 205, 214, 218, 219, 224
.retsab command 219
.s2d command 194
.sd command 37, 120, 162
.sino command 260
.sl command 37, 120, 162
.sl0 command 37, 120
.sr command 37, 120, 162
.sr0 command 37, 120
.sret command 194, 204, 217, 224
.st command 176
.su command 37, 120, 162
.tif files 114
.txt files 153
.vr command 36, 118, 159
.wmf files 25, 114
.y command 146
.zi command 36, 119, 161
.zl command 36, 119, 161
.zo command 36, 119, 161
.zx command 36, 119, 161
/2 command 35, 42, 118, 159
/8 command 36, 118, 159
? command help 46

Numerics
12 23
180 degree phase correction
 1D 193
 2D 231
3D molecule viewer 259
-90 degree phase correction
 1D 193
 2D 231
90 degree phase correction
 1D 193
 2D 231
abs command 99, 103, 194, 195, 198, 214
absd command 214
absorption mode 192, 193, 229, 230, 231
acqu command 275
acquisition
 commands 274, 278
 mode 300
 parameters 93, 94, 287
 status bar 276, 289
 toolbar 273, 275
Acquisition Reference Manual 21, 97, 282, 283, 300
AcquPars tab 93, 123, 165, 287
activate
 a data window 251
 the next data window 256
add
 comment to audit file 308
 directory to the browser 22
 functionalities to Topspin 29
 peak in 2D phase correction 227
 peak to peak list 222
add increment in 2D levels 174
align
 intensities in multiple display 212
 peak positions in multiple display 212
Alt-F11 key 118, 158
Alt-F4 key 41, 47
Alt-F6 key 47
Analysis menu 25, 26, 33
apk command 99, 103, 191
apks command 191
arrange
 data windows 252
 data windows horizontally 254
 data windows vertically 253
 rows/columns in 2D phase correction 232
ascii files 86, 153
ased command 96, 123
Aspect 3000 data 75
ATM probehead 279, 280
atma command 280
AU macros 29, 354, 355
AU program reference manual 104
AU programs 20, 29, 103, 300, 354, 359, 362
 audit
 trail check 307
automate data acquisition 30
automatic
 1D baseline correction 99
 1D calibration 99, 205
 1D integration 194
 1D peak picking 220
 1D phase correction 99, 191
 2D calibration 246
 compilation of an AU program 303
 configuration of a datastation 299
 selection of the first expno/procno 69
 tuning and matching 280
automatic mode
 of the Acquisition Guide 272
 of the Processing Guide 26, 101
automation 29, 30, 300
atoplot command 103, 110
autostart.mac file 332
Avance spectrometers IV, 299
axis units 35, 145, 169, 206, 247
B
background of a data window 338
Backspace key 38
backward peak picking 222
baseline correction
 1D 99, 214
 mode 35, 214
bcm command 217
bias correction 199
bio-molecular experiments 30 nbmr command 356
bnmrsel command 356
bpan command 357
browser 31, 32, 41, 57, 68
 font 343
 in multiple display mode 209, 240
Bruker
 AU programs 30, 302
 data format 21, 27, 28, 71, 75, 76, 85
 example datasets 22, 64
 BSMS control datasets 282
BSMS display window 256
bsmsdisp command 282

C

calibration 99
 1D interactive 205
 2D interactive 246
 mode 35, 205, 246
cf command 20, 49, 297, 298, 299
calibration shift 212
chemical shift distance
 1D 260
 2D 247
CHEMSTR parameter 143
C-language 29, 103, 354, 355
clevels file 176
clipboard 25, 41
close
 active data window 255
 lock display window 281, 282
 the active data window 41
close command 41
cmdhist command 38
cmdindex command 46
cmdtab_user.prop file 47
collapse a data directory 57, 62
color scheme 337
colors
 of data objects 336
 of the lock display 337
 on the printer 336
command
 definition 47
 dialog box 89
 help 44
 index 46
 line 37, 38, 345
command line
 commands 274
 focus 37, 41
 font 344
 history 37, 38
 preferences 345
 resize 346
 usage 37

Command Prompt 19, 298
compile
 AU program 302, 303
components
 of a spectrum 24
composite commands 100
configuration
 commands 20
 customized 299
 default 299
 directory 299
 name 299
 of a datastation 20
 of a spectrometer 20
 of the acquisition status bar 276
 of the tab bar 335
 of the Topspin menu 348
password 297
consistency check 307
contour display 226
 of 2D spectra 173
 of 3D planes 180
contour levels 158, 174
control keys 40
convdta command 78
convert
 data to JCAMP-DX 78
 data to text 78
 data to ZIP 78
copy & paste data 33, 73, 76
copy command 25, 34, 113
copy data 77
create
 an AU program 29, 104, 302, 354
 an empty data window 68
 data window color scheme 337
dataset 34
macro 29, 354
new data window 21
new dataset 65, 286
plot layouts 25, 112
Python program 30, 355
set of user preferences 329
user defined command 29
user notebook 353
C-statements 29
Ctrl key 62, 69, 81, 118, 159, 208, 209
Ctrl-c key 38, 41, 133
Ctrl-d key 31, 41
Ctrl-f key 41
Ctrl-F3 key 47
Ctrl-F5 key 47
Ctrl-F6 key 47
Ctrl-n key 34, 41, 65, 286
Ctrl-o key 34, 41, 70, 75
Ctrl-p key 25, 34, 41, 112, 133
Ctrl-s key 27, 34, 41, 77, 78
Ctrl-v key 38, 41
Ctrl-w key 41
cube display 179
cubic spline baseline correction 218
cursor information 148
customized configuration 299
cut integrals 203

D
data
area 22, 31, 68, 73, 76, 249, 252, 255
compression 28
dimensionality 32, 92, 97, 122, 123
directory 57, 64, 81
field 37, 115, 120, 157
object colors 336
data window 21, 31, 33, 68, 73, 76
2D 157
3D 179
color scheme 337
contents 25, 113
creation 68
handling 33, 249
in 1D peak picking mode 220
in 1D phase correction 192
in 2D calibration mode 246
in 2D multiple display mode 239
in 2D phase mode 226, 233
in baseline correction mode 215
in calibration mode 206
in integration mode 195
in multiple display mode 208
in S/N measurement mode 261
in spline baseline correction mode 218
objects 24
popup menu 146, 162
printing 109
reopen 116
tab bar 1D 121
tab bar 2D 165
toolbar 24
dataset
active 251
colors 214
dir 21, 305
directory tree 21, 72
expno 21, 60, 65, 305
files 86, 153
handling 29, 57
last 2D 34
last 3D 34
last used 332
name 21, 60, 65, 73
procno 21, 60, 65, 305
procno directory 73
properties 150
selection in multiple display 209
specification 72, 251
title 65
top level directory 60
user 21, 60, 65, 305
variables 78
datastation
configuration 299
dcon command 28, 350
dconpeaks.txt file 28
deconvolution 28
default
color scheme 338
command line size 345
configuration 299
find criteria 83
menu font 342
pivot point in 1D phase correction 192
pivot point in 2D phase 229
plane in 3D display 179
printer 111
Tab bar 335
zero order phase correction 193
define
 cubic spline baseline points 218
 integral regions 196
 NMR ADMINISTRATOR password 297
 NMR SUPERUSER 297
 peak ranges 221
 peaks 222
de-iconify
 data window 255
delete
 AU program 303
 data 79
 integrals from display 201
 noise region S/N 262
 peaks from a peak list 223
 signal region S/N 262
 spline baseline points 219
Delete key 38
depth cueing in 3D 183
deselect
 data in multiple display 209, 210
 integral regions 197
dialog box font 343
difference spectrum
 in baseline correction 217
 in multiple display 210
dimensionality of a dataset 32, 92, 93, 97, 122
dir command 22
disable
 commands 348
 menus 348
 toolbar buttons 347
Display
 button 21, 74, 84
 menu item 68, 69, 208
display
 1D acquisition status parameters 123
 1D data 115
 1D FID 145
 1D integral list 134
 1D peak list 125
 1D processed data 121
 1D raw data 145
1D spectrum 121
1D spectrum overview 145
2D contours 173
2D data 157
2D FID 169
2D grid 172
2D integral list 167
2D peak list 166
2D projections 170
2D spectrum in contour mode 173
2D spectrum in oblique mode 176
2D spectrum in pseudo color mode 176
3D cube 182
3D data 179
 columns in 2D phase correction 226
 contours in 2D phase 226
 data from the browser 22, 59
 data from the portfolio 59
 data in multiple windows 116
 dataset file list 151
 dataset properties 150
 expno/procno list 69
 found dataset 83
 full spectrum in 2D phase correction 227
 integrals 23
 JCAMP data 28
 manipulation 117
 manipulations 35
 mode of the lock window 281
 molecule structure 143
 options 35
 options 1D 145
 peaks 23
 planes of 3D data 179, 180
 positive/negative 2D levels 178
 processing status parameters 1D 122
 projections 23
 rows in 2D phase correction 226
 settings 34
 special data formats 75
 spectra 21
 spectrum overview in 2D 169
 status parameters 92, 96
 sum/difference spectrum 210
 superimposed 1D spectra 207
superimposed 2D spectra 238
 y-axis 35, 146
 zipped data 27
display properties 23
distance measurement
 1D 260
 2D 247
 mode 35
double-headed arrow 250, 261
 Down-Arrow key 38, 41, 42
dpa command 123
dpp command 92, 96, 122
drag & drop data 73, 76

E
ed command 93, 94, 123, 165
edasp command 97, 123
edau command 30, 104, 300, 302, 354
edcpul command 125
edit
 AU program 303
commands 38
 contour levels 174
 integral ranges 199
 pulse program 125
 signal/noise regions 262
 title of a dataset 124
Edit menu 33
edlev command 158, 174
edlock command 97
edmac command 29, 354
edp command 26, 89, 90, 122, 165
edprosol command 96
edpul command 125
edpy command 30, 355
edti command 124
ef command 100, 103
efp command 100, 289
em command 26, 99
email data 28
empty data window 68
enable
 disabled commands 350
 menus/commands 346
Enter key 42, 59
equidistant sequence of levels 174
 Esc key 37
 execute
 AU program 300, 303
 macro 29, 354
 Python program 30
 exit command 41, 48
 expand
 a data directory 42
 data directory 21, 22, 57
 data directory in the browser 62
 individual spectra in multiple display 212
 spectrum 28
 expand a region 23
 experiment time 275
 expinstall command 20, 49, 274, 297, 298, 299, 300
 expl command 73, 86, 87, 153
 Explorer 72, 86, 153
 expno 65, 69, 72, 78, 151
 exponential
 baseline correction 216
 window multiplication 99, 100
 export data 24, 114
 expt command 275
 extend the Topspin functionality 353
 external projection 24
 extract a row/column in 2D 244

F
F1 dimension 162, 169, 225
F1 key III, 41
F1-F2 plane 180, 183
F2 dimension 162, 169, 225
F2 key 41, 61
F2-F3 plane 181, 183
F3 key 47
F3-F1 plane 179, 181, 183
F5 key 47
F6 key 41, 47, 252
fid command 145, 169
FID display 274, 278, 284, 288
Fid tab 145, 151, 169
File Chooser 21
File menu 21, 33
file size of raw data 275
files of a dataset 73, 78, 86, 151, 153
find command 41, 82
find data 33, 82
first order phase correction
 1D 193
 2D 229, 231
fitting peaks 28
fmc command 100
focus 37, 41, 61, 62
font
 of dialog windows 343
 of the browser 343
 of the command line 344
 of the interface 340
 of the menu 341
 of the status line 344
 of the tab bar 342
forward peak picking 222
Fourier transform 99, 100
fp command 100
fromjdx command 28
fromzip command 27
ft command 25, 26, 99
ftf command 26, 348
function keys 40

G
Gaussian deconvolution 28
Gaussian window multiplication 100
genfid command 78, 79
genser command 79
geometric sequence of levels 174
gometry of a Topspin window 256, 257
getprosol command 96, 123
gf command 100
gfp command 100
Gnome Mozilla 86
grab rows/columns in 2D 242
gradient enhanced spectroscopy 29
graphic functions 355
graphics files 25, 114
grid
 display 35, 172, 281
 window arrangement 252

GS parameter adjustment window 284

H
halt an acquisition 274, 275
halt command 274, 276, 288
Hardware requirements V
helium level 282
Help
 button 46
 menu 33, 45
help
 in Topspin 44
 on commands 46
help command 46
Hertz axis units 145, 169
hist command 47, 50, 357, 362, 364
history file 362
hostname of a remote system 323
HTML page 46

I
iconify
 all data windows 256
 data window 254
iconnmr command 30
image display
 of 2D data 176
 of 3D planes 180
import data 28
inconsistent dataset 92
initial guess 268
install
 AU programs 20, 300
 pulse programs 20
 Topspin 297
installation directory 64, 298, 299
installnmr script 298
int command 149
Integral
 list 2D 167
integral
 bias 199
 display 23
 label 197

I-7
list 1D 134
regions 195, 196, 197, 198, 203
scaling factor 203
slope 200
trails 149, 203
values 196
Integrals tab 134, 167, 205
integrals.txt file 205
integration
 1D automatic 194, 198
 1D interactive 194, 195, 198
 mode 35, 195, 204, 205
intensity
 alignment in multiple display 212
 decrease 1D 118, 158
 increase 1D 118, 158
 manipulation 35
 reset 1D 36, 118, 158
 scaling 2D 159
interactive
 1D baseline correction 214
 1D calibration 205
 1D data manipulation 189
 1D integration 194
 1D peak picking 220
 1D phase correction 189, 191
 1D signal to noise calculation 260
 2D calibration 246
 2D data manipulation 225
 2D phase correction 225
 data manipulation 25, 34, 335
 modes 34
 parameter adjustment 93, 284
 processing 99
 Processing Guide mode 103
interface fonts 340
internal projection 24
Internet Browser 73
intrng file 199, 202, 204
IP address of a remote system 323
IUPAC standard 28

J
JCAMP-DX format 28, 75, 76, 78
Jeol spectrometer 75
Jmol molecule structure viewer 143
JNMR data 75

K
KDE konqueror 86
keyboard commands 33
kill command 53
Konqueror 86, 153

L
Left-Arrow key 38, 42, 62
Levenberg-Marquardt algorithm 268
li command 134, 195
Liouville equation 29
lipp command 134
lippf command 134
list 167
 1D integrals 134
 2D integrals 167
 2D peaks 166
 AU programs 300
 baseline points 218
 Bruker AU programs 302
 color schemes 338
 data files 85, 151
 EXPNOS/PROCNOS 69
 found data 83
 integrals 112, 204
 macros 29
 opened datasets 59, 60, 61
 parameter sets 65
 peaks 112, 222
 peaks 1D 125
 plot layouts 110
 solvents 65
 user defined AU programs 302
local
 Topspin interface 319
lock
 parameters 97
 signal 281
lock command 282
lock display
 colors 337
 mode 281
window 256, 275, 277, 281
lockdisp command 275, 281
lock-in procedure 281
Lorentzian deconvolution 28
lower toolbar 35

M
macros
 in AU programs 103, 355
 in Topspin 29, 47, 100, 354, 359, 362
magnitude calculation 100
matching the probehead 279
MAXI parameter 222
maximize
 all data windows 256
 data window 255
maximum
 command line size 346
MC2 parameter 93
menu
 bar 33
 commands 33
 configuration table 348, 350
 entries 33, 348
 font 341, 342
 settings 329
MI parameter 222
minimize
 data window 254
minimum
 command line size 346
Minus key 42
mixtures 29
molecule structure viewer 143
mouse sensitivity
 in 1D baseline correction 217
 in 1D integration 200
 in 1D phase correction 194
 in 2D phase correction 231
move
 data window 250
Mozilla 86, 153
multiple display
 1D 35, 207, 238
 1D/2D 24, 69, 74
2D 24, 238
 in deconvolution 28
multiple display mode 69, 207
multiple window display 116
multiplet 196
multiply with increment in 2D levels 174

N
nbook command 353
negative
 2D levels 178
new command 34, 41, 65, 286
newtop command 48
next
 channel for wobbling 280
 command 41
 dataset in Browser 42
 parameter field 92, 96
 plane in 3D 181
 row/column in 2D phase correction 231, 243
 window in data area 41, 252, 256
NMR ADMINISTRATION password 297
NMR SUPERUSER 297
nmradminpassword file 297
nmrsim command 29
nmrsuperuser file 297
noise region 260, 261
NOISF1 parameter 260
NOISF2 parameter 260
notebook 353
NS parameter 274

O
O1 parameter 275
O2 parameter 275
O3 parameter 275
objects
 of a dataset 24, 116, 250, 329, 335, 336, 337
oblique display
 of 2D spectra 176, 178
 of 3D planes 180
online help 45
online manual
 plot editor 112
Topspin 44
open
 browser/portfolio 61
data 34, 41, 57, 68, 70
data from the browser 21
data from the command line 73, 76
data from the Explorer 72
data from the menu 21
IconNmr interfaces 30
Linux Shell 19
new data window 252
new proco 74
online help documents 45
special format data 75
Topspin command index 46
open command 34, 41, 70, 75
Options menu 33
overview spectrum
 1D 145
 2D 169
P
paper format 300
paracon command 300
parameter
 adjustment window 93, 284
 change 92, 96, 97
 display 23
 editor 89, 90, 93, 94
 field 91, 92, 95, 96
 files 85
 handling 89
 name 89, 93
 search 122, 123
 value 91, 95
parameter set 65, 78
PARMODE parameter 123
paste command 34, 73, 76
peak
 alignment 24, 212
 display 23
 fitting 28
 group 28
 labels 149, 150, 222
 list 223, 224
 list 1D 125, 222
 list 2D 166
 picking mode 220
 position 260
 position alignment 212
 ranges 224
peak picking
 1D automatic 220
 1D interactive 220
 mode 35
 mode 1D 220
 ranges in 1D 221, 222
peak.txt file 224
peakrng file 224
Peaks tab 112, 125, 166
phase correction
 1D automatic 99, 100
 1D interactive 191
 2D interactive 225
 first order 1D 193
 mode 34
 mode 1D 192
 mode 2D 226
 pivot point in 1D 192
 values 1D 194
 zero order 1D 193
PHC0 parameter 91, 193, 230
PHC1 parameter 193, 231
pivot point
 in 1D phase correction 192
 in 2D phase correction 229
pk command 194
plane display in 3D 180
plot
 data from the menu 109
 data from the Plot Editor 112
 data from the Processing Guide 111
 layouts 25
plot command 110, 112
Plot Editor 25, 110
Plus key 42
polynomial
 baseline correction 215
position
 of a Topspin window 257
position of a Topspin window 256
position the baseline of a row/column in 2D 245
positive
 2D levels 178
pp command 133, 149, 150
PPPARMOD parameter 92, 97, 122
ppl command 222
ppm axis units 145, 169
pps command 220
preferences 33, 329
pre-scan-delay 300
preview
 the baseline corrected spectrum 216
previous
 commands 37
 dataset in browser 42
 parameter field 92, 96
 plane in 3D 181
 row/column in 2D phase correction 231, 243
print
 1D peak list 133
 active window 25, 110
 colors 337
 data from the menu 109
 data from the Processing Guide 111
 integral list 112
 metafiles 113
 peak list 112
 the current dataset 41
print command 34, 41, 109, 112, 133
printer colors 336
prnt command 110
probehead/solvent dependent parameters 96
proc_1d AU program 103
process data 25, 33
 from the command line 99
 from the Processing Guide 100
 with AU programs 103
 with composite commands 100
processing
 parameters 89, 90
 parameters 1D 122
 parameters 2D 165
Processing Guide 26, 101, 103
Processing menu 25, 26, 33
Processing Reference Manual 23
procno 69, 74, 78, 86, 152
ProcPars tab 26, 89, 90, 122, 165
projections of a 2D spectrum 23, 170
properties
 of a dataset 150
 of a printer 110
prosol parameters 287
pseudo raw data 78
pulse program 20, 29, 62, 125
 display 125
 parameters 96, 123, 287
PulsProg tab 125
Python programs 30, 355, 359, 362
Q
QUIT AU macro 104
QUITMSG AU macro 104
R
re command 22, 73, 207
read
 color scheme 338
 data formats 75
 integrals from disk 198
 the prosol parameters 287
 window layout 256
reb command 21, 74
re-enable disabled commands 350
reference peak
 in 1D calibration 206
 in 1D phase correction 192, 193
 in 2D calibration 247
 in 2D phase correction 229
referencing 99
reg file 204
relaxation
 curve 263
remote connections 329
remove
 commands 348
 data from multiple display 210
 menus 348
 toolbar buttons 347
reopen a dataset 116
reopen command 67, 116
rep command 22, 74
rew command 74
rescale
 2D projection 171
 data in multiple windows 117
reset
 1D baseline correction 217
 1D phase values 193
 3D cube size and orientation 183
 F1 zoom factor in 2D 161
 F2 and F1 zoom factor 161
 intensity 1D 118
 intensity in 2D 159
 search mask 83
 zoom factor 36, 119
resize
 command line 346
 data window 250
 graphics 113
resolution of a screen dump 25, 114
restore
 adjusted acquisition parameters (GS) 286
 size and position of a data window 255
 toolbar 348
 uncorrected baseline 217
retrieve
 previously entered commands 37, 38
rew command 22, 74
Right-Arrow key 38, 42, 62
rotate 3D cube 178, 182
routing parameters 97
S
S/N value 262
Sample tab 142
sav command 34, 41
save
 1D baseline correction 217
 1D integrals 204
 1D phase correction 194
 acquisition data 78
 adjusted acquisition parameters (GS) 285
 AU program 30, 302
 color scheme 337
cubic spline baseline points 219
current window layout 256
data 27, 34, 41, 77
data in analog filtered format 78
data to a JCAMP-DX file 28
data to a ZIP file 27
data window to a graphics file 25, 114
entire dataset 77, 78
integral regions 203
macro 29
parameters 122, 123
peak list and peak ranges 224
phase correction 2D 229, 232, 238
processed data 78
processed data as pseudo raw data 78
pulse program 142
sum or difference spectrum 210
title of a dataset 124
scale
 1D integrals 202
 1D spectrum 118
 2D spectrum 158
 3D cube 183
 individual spectra in multiple display 24,
 207, 212
 row/column in 2D phase 230
scaling factor
 of integrals 203
scan
 planes of 3D data 181
 rows/columns in 2D 242
screen dump 25, 114
scroll bar 92, 96
search
 criteria 82
 data 82
 field in the parameter editor 91, 95
 result window 83
select
 AU program 303
 color scheme 338
 data 57
data in multiple display 208, 209
data window 251
default printer 300
expno/procno combination 69
first expno/procno 69
folders in the browser 62
font 342, 343, 344
integral regions 197, 199
lock signal color 337
multiple datasets 69
multiple folders 62
peaks in 2D phase correction 226
plot layout 110
printer 110
remote system 323
row/column in 2D phase 229
spectra in 2D multiple display 241
spectrum color 336
spectrum print color 337
Topspin window 257
selective excitation 29
semi-automatic
 peak picking 222
 processing 100
sensitivity
 of the GS slider 284
 of the mouse 194, 200, 217, 231
serial command 104
serial processing 104
Server ID 323
set
 1D acquisition parameters 123
 2D acquisition parameters 165
 2D processing parameters 165
 colors for multiple display 214
 contour levels 174
 lock parameters 97
 phase pivot point 192
 processing parameters 89
 processing parameters 1D 122
 routing parameters 97
 user preferences 330
set command 121, 329
SFO1 parameter 275
Shell 19
shift
 1D data down 120
 1D data smoothly 120
 1D data to the extreme left 120
 1D data to the extreme right 120
 1D data to the left 120
 1D data to the right 120
 1D data up 120
 1D/2D data 37, 42
 2D data down 162
 2D data smoothly 162
 2D data to the left 162
 2D data to the right 162
 2D data up 162
 data in multiple windows 117
 individual spectra in multiple display 24, 207, 212
 row/column in 2D phase 230
Shift key 62, 69, 81, 208, 209
Shift-Tab key 92, 96
short description
 of an AU program 303
shortcuts for processing 100
show command 53
SIGF1 parameter 260
SIGF2 parameter 260
signal region 260, 261
signal to noise calculation 260
Simplex algorithm 268
simulating experiments 29
sine
 baseline correction 216
single commands 99
slider sensitivity 284
slope correction 199
small command 28, 34
smooth
 1D phase correction 230
 1D scaling 36
 1D shifting 120
 1D zooming 36, 119
 1D/2D shifting 37
 2D shifting 162
 scaling of 1D integrals 202
 scanning of planes in 3D 181
 shifting of 1D integrals 203
solvent 65
spec command 121
special format data 28
spectrometer
 frequency 275
spectrometer hardware 20, 21
Spectrometer menu 33, 273
spectrum
 display 1D 121
 objects 329, 330
 overview 1D 145
 overview 2D 169
Spectrum tab 121, 145, 152
square 2D layout 160
square brackets 33, 45, 116, 121
sref command 99, 103, 205, 246
stacked multiple display 211
Start button 72
startup actions 329
status line font 344
status parameter
 change 93
 display 96, 149
 display 1D 122, 123
stdisp command 292
stop an acquisition 274
stop command 274, 276, 288
store
 2D contour levels 175
structure file 143
Structure tab 143
sum spectrum
 in multiple display 210
superimpose
 1D spectra 207
 cursor information 148
 electronic signature 150
 integral trails/labels 149
 main status parameters 149
 peak labels 149
 spectra 24
 title of a dataset 149
SW parameter 275
swap data windows 257
sweep width 275
swin command 257
switch
to the last 2D data 34
to the last 3D data 34

T
T1 calculation III
T1/T2 Relaxation 263
t1guide command 263
T2 calculation III
Tab bar
 1D 116, 121
 2D 158, 165
 configuration 121, 335
 font 342
 usage 121
Tab key 92, 96
tabbed pane 165, 335
TCP/IP port 321
temperature unit window 256
Terminal Window 19
time domain signal 29
title bar 115, 116, 157, 250, 251, 254, 255, 256, 303
title file 124
title of a dataset 23, 62, 65, 124, 149, 286, 337
Title tab 124
toccpn command 78
tojdx command 28, 78
toolbar
 1D 189
 2D 225
 configuration 347
 extension 359
 for acquisition 273
 icons 360, 362
 of the data window 24, 145
 of the FID display window 288
 tips 45
 usage 34
tooltips 44, 45
top level directory 21, 22, 57, 64
Topspin
 color schemes 338
 data area 73, 76
 fonts 341
 help 44
installation 299
installation directory 299
startup V, 19
tailoring 329
window 31
topspin command 19
Topspin icon 19
totxt command 78
tozip command 27, 78
tshome directory 19, 45, 299
tuning the probehead 279

U
undo
 last parameter change 92, 96
 last region operation 204
unzip utility 28
Up-Arrow key 38, 41
upper toolbar
 1D 34, 189
 2D 225
user defined
 AU programs 300
 buttons 359, 362, 364
 commands 26, 29
 functions keys 47
 plot layouts 111
User Interface functions 355
user preferences 329
user properties directory 47

V
Varian spectrometer 75
vertical scaling 118, 159
View menu 33, 148
virtual spectrometer 29
VNMR data 75

W
walk-up 30
wbst command 280
wbsw command 280
wildcards 81
window layout 256
Window menu 33, 257
WINNMR data 75
wm command 26, 89
wmisc command 78
wobb command 276, 279
wobble
 display 277
 frequency 280
 procedure 279
 steps 280
 sweep width 280
 window 279
wpar command 78
wra command 78
wrp command 78
wrpa command 27, 77, 78

X
xau command 303
x-axis rotation in 3D 178, 182
xmac command 29

Y
y-axis display 35, 146
y-axis rotation in 3D 178, 182

Z
z-axis rotation in 3D 182
zero order phase correction
 1D 193
 2D 229, 230
zg command 274, 276, 287
ZIP data format 27, 75
zoom
 1D data 36, 119
 2D data 161
 in 2D phase correction 227
zoom 1D/2D data 42

Symbols
? command help 52
.2d command 38
.3d command 38
.all command 40, 128, 170
.basl command 227
.bmp files 27
Alt-F4 key 45, 53
Alt-F6 key 53
Analysis menu 27, 37
apk command 106, 110, 200
apks command 200
arrange
data windows 265
data windows horizontally 267
data windows vertically 266
rows/columns in 2D phase correction 245
ascii files 93, 162
ased command 103, 132
Aspect 3000 data 82
ATM probehead 298, 299
atma command 299
AU macros 31, 373, 374
AU program reference manual 111
AU programs 21, 31, 110, 319, 373, 378, 381
audit
trail check 326
automate data acquisition 32
automatic
1D baseline correction 106
1D calibration 106, 217
1D integration 203
1D peak picking 232
1D phase correction 106, 200
2D calibration 259
compilation of an AU program 322
configuration of a datastation 318
selection of the first expno/procno 76
tuning and matching 299
automatic mode
of the Acquisition Guide 289
of the Processing Guide 27, 108
automation 31, 32, 319
autoplot command 110, 117
autostart.mac file 351
Avance spectrometers 17, 318
axis units 39, 154, 178, 218, 260

B
background of a data window 357
Backspace key 42
backward peak picking 234
baseline correction
1D 106, 226
mode 39, 226
bcm command 229
bias correction 208
bio-molecular experiments 32
bnmr command 375
bnmrsel command 375
bpan command 376
browser 35, 36, 45, 64, 75
font 362
in multiple display mode 220, 253
Bruker
AU programs 32, 321
data format 22, 29, 30, 78, 82, 83, 92
data format set 319
evaluate the example datasets 23, 71
BSMS control panel 301
BSMS display window 269
bsmsdisp command 301
C
calibration 106
1D interactive 217
2D interactive 259
mode 39, 217, 259
cf command 21, 56, 316, 317, 318
chemical shift 224
chemical shift distance
1D 273
2D 260
CHEMSTR parameter 152
C-language 31, 110, 373, 374
clevels file 185
clipboard 26, 45
close
active data window 268
lock display window 300
the active data window 45
close command 45
cmdhist command 43
cmdindex command 52
cmdtab_user.prop file 53
collapse a data directory 64, 69
color scheme 356
colors
of data objects 355
of the lock display 356
on the printer 355
command
definition 53
dialog box 96
help 50
index 52
line 41, 42, 364
command line
commands 291
focus 41, 45
font 363
history 42
preferences 364
resize 365
usage 41
Command Prompt 20, 317
compile
AU program 322
components
of a spectrum 26
composite commands 107
configuration
commands 21
customized 318
default 318
directory 318
name 318
of a datastation 21
of a spectrometer 21
of the acquisition status bar 294
of the tab bar 354
of the Topspin menu 367
password 316
consistency check 326
contour display 239
of 2D spectra 182
of 3D planes 189
contour levels 167, 183
core keys 45
convdta command 85
convert
data to JCAMP-DX 85
data to text 85
data to ZIP 85
copy & paste data 37, 80, 83
copy command 26, 38, 120
copy data 84
C-program 110
create
an AU program 31, 111, 321, 373
an empty data window 75
data window color scheme 356
dataset 38
macro 31, 373
new data window 23
new dataset 72, 305
plot layouts 26, 119
Python program 32, 374
set of user preferences 348
user defined command 31
user notebook 372
C-statements 31
Ctrl key 69, 76, 88, 127, 168, 219, 221
Ctrl-c key 42, 45, 142
Ctrl-d key 35, 45
Ctrl-f key 45
Ctrl-F3 key 53
Ctrl-F5 key 53
Ctrl-F6 key 53
Ctrl-n key 38, 45, 72, 305
Ctrl-o key 38, 45, 77, 82
Ctrl-p key 26, 38, 45, 119, 142
Ctrl-s key 29, 38, 45, 84, 85
Ctrl-v key 42, 45
Ctrl-w key 45
cube display 188
cubic spline baseline correction 230
cursor information 157
customized configuration 318
cut integrals 212
D
data
area 24, 35, 36, 75, 80, 83, 262, 265, 268
compression 30
dimensionality 36, 99, 104, 131, 132
directory 64, 71, 88
field 41, 124, 129, 166
object colors 355
data window 23, 36, 37, 75, 80, 83
2D 166
3D 188
color scheme 356
contents 26, 120
creation 75
handling 37, 262
in 1D peak picking mode 232
in 1D phase correction 201
in 2D calibration mode 259
in 2D multiple display mode 252
in 2D phase mode 239, 246
in baseline correction mode 227
in calibration mode 217
in integration mode 204
in multiple display mode 220
in S/N measurement mode 274
in spline baseline correction mode 230
objects 26
popup menu 155, 171
printing 116
reopen 125
tab bar 1D 130
tab bar 2D 174
toolbar 26
dataset
active 264
colors 226
dir 22, 324
directory tree 22, 79
expno 22, 67, 72, 324
files 93, 162
handling 31, 64
last 2D 38
last 3D 38
last used 351
name 22, 67, 72, 80
procno 22, 67, 72, 324
procno directory 80
properties 159
selection in multiple display 221
specification 79, 264
title 72
top level directory 67
user 22, 67, 72, 324
variables 85
datastation
configuration 318
dcon command 30, 369
dconpeaks.txt file 30
deconvolution 30
default
color scheme 357
command line size 364
configuration 318
find criteria 90
menu font 361
pivot point in 1D phase correction 201
pivot point in 2D phase 242
plane in 3D display 188
printer 118
Tab bar 354
zero order phase correction 202
define
cubic spline baseline points 230
integral regions 205
NMR ADMINISTRATOR password 316
NMR SUPERUSER 316
peak ranges 233
peaks 234
de-iconify
data window 268
delete
AU program 322
data 86
integrals from display 210
noise region S/N 275
peaks from a peak list 235
signal region S/N 275
spline baseline points 231
Delete key 42
depth cueing in 3D 192
deselect
data in multiple display 221, 222
integral regions 206
dialog box font 362
difference spectrum
in baseline correction 229
in multiple display 222
dimensionality of a dataset 36, 99, 100, 104, 131
dir command 24
disable
commands 367
menus 367
toolbar buttons 366
Display
button 23, 81, 91
menu item 75, 76, 219
display
1D acquisition status parameters 132
1D data 124
1D FID 154
1D integral list 143
1D peak list 134
1D processed data 130
1D raw data 154
1D spectrum 130
1D spectrum overview 154
2D contours 182
2D data 166
2D FID 178
2D grid 181
2D integral list 176
2D peak list 175
2D projections 179
2D spectrum in contour mode 182
2D spectrum in oblique mode 185
2D spectrum in pseudo color mode 185
3D cube 191
3D data 188
columns in 2D phase correction 239
contours in 2D phase 239
data from the browser 23, 66
data from the portfolio 66
data in multiple windows 125
dataset file list 160
dataset properties 159
explo/procno list 76
found dataset 90
full spectrum in 2D phase correction 240
integrals 25
JAMP data 30
manipulation 126
manipulations 39
mode of the lock window 300
molecule structure 152
options 39
options 1D 154
peaks 25
planes of 3D data 188, 189
positive/negative 2D levels 187
processing status parameters 1D 131
projections 25
rows in 2D phase correction 239
settings 38
special data formats 82
spectra 22
spectrum overview in 2D 178
status parameters 99, 103
sum/difference spectrum 222
superimposed 1D spectra 218
superimposed 2D spectra 251
y-axis 39, 155
zipped data 29
display properties 25
distance measurement
 1D 273
 2D 260
mode 39
double-headed arrow 263, 274
Down-Arrow key 42, 45, 47
dpa command 132
dpp command 99, 103, 131
drag & drop data 80, 83

E
ed command 100, 101, 132, 174
edasp command 104, 132
edau command 32, 111, 319, 322, 373
edcpeul command 134
edit
 AU program 322
commands 42
contour levels 183
integral ranges 208
pulse program 134
signal/noise regions 275
title of a dataset 133
Edit menu 37
edlev command 167, 183
edlock command 104
edmac command 31, 373
edp command 27, 96, 97, 131, 174
edpul command 134
edpy command 32, 374
edti command 133
ef command 133
efp command 107, 308
em command 27, 106
e-mail data 30
empty data window 75
enable
disable commands 369
menus/commands 365
Enter key 47, 66
equidistant sequence of levels 183
Esc key 41
execute
 AU program 319, 322
 macro 31, 373
 Python program 32
exit command 45, 54
expand
 a data directory 47
 data directory 23, 64
 data directory in the browser 69
 individual spectra in multiple display 224
 spectrum 30
expand a region 24
experiment time 292
expinstall command 21, 56, 291, 316, 317, 318, 319
expl command 80, 93, 94, 162
Explorer 79, 93, 162
expno 72, 76, 79, 85, 160
exponential
 baseline correction 228
 window multiplication 106, 107
export data 26, 121
expt command 292
extend the Topspin functionality 372
external projection 25
extract a row/column in 2D 257

F
F1 dimension 171, 178, 238
F1 key 16, 45
F1-F2 plane 189, 192
F2 dimension 171, 178, 238
F2 key 45, 68
F2-F3 plane 190, 192
F3 key 53
F3-F1 plane 188, 190, 192
F5 key 53
F6 key 45, 53, 265
fid command 154, 178
FID display 291, 295, 303, 307
Fid tab 154, 160, 178
File Chooser 23
File menu 23, 37
file size of raw data 292
files of a dataset 80, 85, 93, 160, 162
find command 45, 89
find data 37, 89
first order phase correction
 1D 202
 2D 242, 244
fitting peaks 30
fmc command 107
focus 41, 45, 68, 69
font
 of dialog windows 362
 of the browser 362
 of the command line 363
 of the interface 359
 of the menu 360
 of the status line 363
 of the tab bar 361
forward peak picking 234
Fourier transform 106, 107
fp command 107
fromjdx command 30
fromzip command 29
ft command 27, 106
ftf command 27, 367
function keys 45

G
Gaussian deconvolution 30
Gaussian window multiplication 107
genfid command 85, 86
genser command 86
gerometric sequence of levels 183
gometry of a Topspin window 269, 270
getprosol command 103, 132
gf command 107
gfp command 107
Gnome Mozilla 93
grab rows/columns in 2D 255
gradient enhanced spectroscopy 31
graphic functions 374
graphics files 27, 121
grid
 display 39, 181, 300
 window arrangement 265
gs command 100, 293, 303
GS parameter adjustment window 303

H
halt an acquisition 291, 292
halt command 291, 293, 307
Hardware requirements 18
helium level 301
Help
 button 52
 menu 37, 51
help
 in Topspin 50
 on commands 52
help command 52
Hertz axis units 154, 178
hist command 53, 57, 376, 381, 383
history file 381
hostname of a remote system 341
HTML page 52

I
iconify
 all data windows 269
 data window 267
iconnmr command 32
image display
 of 2D data 185
 of 3D planes 189
import data 30
inconsistent dataset 99
initial guess 285
install
 AU programs 21, 319
 pulse programs 21
 Topspin 316
installation directory 71, 317, 318
installnmr script 317
int command 158
Integral
 list 2D 176
integral
 bias 208
 display 25
 label 206
 list 1D 143
 regions 204, 205, 206, 207, 212
 scaling factor 212
 slope 209
 trails 158, 212
 values 205
Integrals tab 143, 176, 214
integrals.txt file 214
integration
 1D automatic 203, 207
 1D interactive 203, 204, 207
 mode 39, 204, 213, 214
intensity
 alignment in multiple display 224
 decrease 1D 127, 167
 increase 1D 127, 167
 manipulation 39
 reset 1D 40, 127, 167
 scaling 2D 168
interactive
 1D baseline correction 226
 1D calibration 217
 1D data manipulation 198
 1D integration 203
 1D peak picking 232
 1D phase correction 198, 200
 1D signal to noise calculation 273
 2D calibration 259
 2D data manipulation 238
 2D phase correction 238
 data manipulation 27, 38, 354
modes 38
parameter adjustment 100, 303
processing 106
 Processing Guide mode 110
interface fonts 359
internal projection 25
Internet Browser 80
intrng file 208, 211, 214
IP address of a remote system 341
IUPAC standard 30
J
JCAMP-DX format 30, 82, 83, 85
Jeol spectrometer 82
Jmol molecule structure viewer 152
JNMR data 82
K
KDE konqueror 93
keyboard commands 37
kill command 60
Konqueror 93, 162
L
Left-Arrow key 42, 48, 69
Levenberg-Marquardt algorithm 285
li command 143, 204
Liouville equation 31
lipp command 143
lippf command 143
list 176
 1D integrals 143
 2D integrals 176
 2D peaks 175
 AU programs 319
 baseline points 230
 Bruker AU programs 321
 color schemes 357
 data files 92, 160
 EXPNOS/PROCNOS 76
 found data 90
 integrals 119, 213
 macros 31
 opened datasets 66, 67, 68
 parameter sets 72
 peaks 119, 234
 peaks 1D 134
 plot layouts 117
 solvents 72
user defined AU programs 321
local
 Topspin interface 338
lock
 parameters 104
 signal 300
lock command 301
lock display
 colors 356
 mode 300
 window 269, 292, 295, 299
lockdisp command 292, 299
lock-in procedure 300
Lorentzian deconvolution 30
lower toolbar 39
M
macros
 in AU programs 110, 374
 in Topspin 31, 53, 107, 373, 378, 381
magnitude calculation 107
matching the probehead 298
MAXI parameter 234
maximize
 all data windows 269
 data window 268
maximum
 command line size 365
MC2 parameter 100
menu
 bar 37
 commands 37
 configuration table 367, 369
 entries 37, 367
 font 360, 361
 settings 348
MI parameter 234
minimize
 data window 267
minimum
 command line size 365
Minus key 48
mixtures 31
molecule structure viewer 152
mouse sensitivity
 in 1D baseline correction 229
 in 1D integration 209
 in 1D phase correction 203
 in 2D phase correction 244
move
 data window 263
Mozilla 93, 162
multiple display
 1D 39, 218, 251
 1D/2D 26, 76, 81
 2D 26, 251
 in deconvolution 30
multiple display mode 76, 218
multiple window display 125
multiplet 205
multiply with increment in 2D levels 183
N
nbook command 372
negative
 2D levels 187
new command 38, 45, 72, 305
newtop command 54
next
 channel for wobbling 299
 command 45
 dataset in Browser 47
 parameter field 99, 103
 plane in 3D 190
 row/column in 2D phase correction 244, 256
 window in data area 45, 265, 269
NMR ADMINISTRATION password 316
NMR SUPERUSER 316
nmradminpassword file 316
nmrsim command 31
nmrsuperuser file 316
noise region 273, 274
NOISF1 parameter 273
NOISF2 parameter 273
notebook 372
NS parameter 291
O
O1 parameter 292
O2 parameter 292
O3 parameter 292
objects
 of a dataset 26, 125, 263, 348, 354, 355, 356
oblique display
 of 2D spectra 185, 187
 of 3D planes 189
online help 51
online manual
plot editor 119
Topspin 50
open
browser/portfolio 68
data 38, 45, 64, 75, 77
data from the browser 23
data from the command line 80, 83
data from the Explorer 79
data from the menu 23
IconNmr interfaces 32
Linux Shell 20
new data window 265
new procno 81
online help documents 51
special format data 82
Topspin command index 52
open command 38, 45, 77, 82
Options menu 37
overview spectrum
 1D 154
 2D 178

P

paper format 319
paracon command 319
parameter
 adjustment window 100, 303
 change 99, 103, 104
 display 25
 editor 96, 97, 100, 101
 field 98, 99, 102, 103
 files 92
 handling 96
 name 96, 100
 search 131, 132
 value 98, 102
parameter set 72, 85
PARMODE parameter 132
paste command 38, 80, 83
peak
 alignment 26, 224
 display 25
 fitting 30
 group 30
 labels 158, 159, 234
 list 235, 236
 list 1D 134, 234
 list 2D 175
 picking mode 232
 position 273
 position alignment 224
 ranges 236
peak picking
 1D automatic 232
 1D interactive 232
 mode 39
 mode 1D 232
 ranges in 1D 233, 234
peak.txt file 236
peakrng file 236
Peaks tab 119, 134, 175
phase correction
 1D automatic 106, 107
 1D interactive 200
 2D interactive 238
 first order 1D 202
 mode 39
 mode 1D 201
 mode 2D 239
 pivot point in 1D 201
 values 1D 203
 zero order 1D 202
PHC0 parameter 98, 202, 243
PHC1 parameter 202, 244
pivot point
 in 1D phase correction 201
 in 2D phase correction 242
pk command 203
plane display in 3D 189
plot
 data from the menu 116
 data from the Plot Editor 119
 data from the Processing Guide 118
 layouts 26
plot command 117, 119
Plot Editor 26, 117
Plus key 48
polynomial
 baseline correction 227
position
 of a Topspin window 270
 position of a Topspin window 269
 position the baseline of a row/column in 2D 258
 positive
 2D levels 187
pp command 142, 158, 159
PPARMOD parameter 99, 104, 131
ppl command 234
ppm axis units 154, 178
pps command 232
preferences 37, 348
pre-scan-delay 319
preview
 the baseline corrected spectrum 228
previous
 commands 42
 dataset in browser 47
 parameter field 99, 103
 plane in 3D 190
 row/column in 2D phase correction 244, 256
print
 1D peak list 142
 active window 26, 117
 colors 356
 data from the menu 116
 data from the Processing Guide 118
 integral list 119
 metafiles 120
 peak list 119
 the current dataset 45
print command 38, 45, 116, 119, 142
printer colors 355
prnt command 117
probehead/solvent dependent parameters 103
proc_1d AU program 110
process data 27, 37
 from the command line 106
 from the Processing Guide 107
 with AU programs 110
 with composite commands 107
processing
 parameters 96, 97
 parameters 1D 131
 parameters 2D 174
Processing Guide 27, 108, 110
Processing menu 27, 37
Processing Reference Manual 24
procno 76, 81, 85, 93, 161
ProcPars tab 27, 96, 97, 131, 174
projections of a 2D spectrum 25, 179
properties
 of a dataset 159
 of a printer 117
prosol parameters 306
pseudo raw data 85
pulse program 21, 31, 69, 134
 display 134
 parameters 103, 132, 306
PulsProg tab 134
Python programs 32, 374, 378, 381
Q
QUIT AU macro 111
QUITMSG AU macro 111
R
re command 24, 80, 219
read
 color scheme 357
 data formats 82
 integrals from disk 207
 the prosol parameters 306
 window layout 269
reb command 23, 81
re-enable disabled commands 369
reference peak
 in 1D calibration 218
 in 1D phase correction 201, 202
 in 2D calibration 260
 in 2D phase correction 242
referencing 106
reg file 213
relaxation
 curve 280
remote connections 348
remove
 commands 367
 data from multiple display 222
 menus 367
 toolbar buttons 366
reopen a dataset 125
reopen command 74, 125
rep command 24, 81
repw command 81
rescale
 2D projection 180
 data in multiple windows 126
reset
 1D baseline correction 229
 1D phase values 202
 3D cube size and orientation 192
 F1 zoom factor in 2D 170
 F2 and F1 zoom factor 170
 intensity 1D 127
 intensity in 2D 168
 search mask 90
 zoom factor 40, 128
resize
command line 365
data window 263
graphics 120
resolution of a screen dump 27, 121
restore
 adjusted acquisition parameters (GS) 305
 size and position of a data window 268
 toolbar 367
 uncorrected baseline 229
retrieve
 previously entered commands 42
rew command 24, 81
Right-Arrow key 42, 48, 69
rotate 3D cube 187, 191
routing parameters 104

S
S/N value 275
Sample tab 151
sav command 38, 45
save
 1D baseline correction 229
 1D integrals 213
 1D phase correction 203
 acquisition data 85
 adjusted acquisition parameters (GS) 304
 AU program 32
 color scheme 356
 cubic spline baseline points 231
 current window layout 269
 data 29, 38, 45, 84
 data in analog filtered format 85
 data to a JCAMP-DX file 30
 data to a ZIP file 29
 data window to a graphics file 27, 121
 entire dataset 84, 85
 integral regions 213
 macro 31
 parameters 131, 132
 peak list and peak ranges 236
 phase correction 2D 242, 245, 251
 processed data 85
 processed data as pseudo raw data 85
 pulse program 151
 sum or difference spectrum 222
 title of a dataset 133
scale
 1D integrals 211
 1D spectrum 127
 2D spectrum 167
 3D cube 192
 individual spectra in multiple display 26, 218, 224
 row/column in 2D phase 243
scaling factor
 of integrals 212
scan
 planes of 3D data 190
 rows/columns in 2D 255
screen dump 27, 121
scroll bar 99, 103
search
 criteria 89
 data 89
 field in the parameter editor 98, 102
 result window 90
select
 AU program 322
 color scheme 357
 data 64
 data in multiple display 219, 221
 data window 264
 default printer 319
 expno/procno combination 76
 first expno/procno 76
 folders in the browser 69
 font 361, 362, 363
 integral regions 206, 208
 lock signal color 356
 multiple datasets 76
 multiple folders 69
 peaks in 2D phase correction 239
 plot layout 117
 printer 117
 remote system 342
 row/column in 2D phase 242
 spectra in 2D multiple display 254
 spectrum color 355
 spectrum print color 356
 Topspin window 270
selective excitation 31
semi-automatic
 peak picking 234
 processing 107
sensitivity
 of the GS slider 303
 of the mouse 203, 209, 229, 244
serial command 111
serial processing 111
Server ID 341

set
 1D acquisition parameters 132
 2D acquisition parameters 174
 2D processing parameters 174
 colors for multiple display 226
 contour levels 183
 lock parameters 104
 phase pivot point 201
 processing parameters 96
 processing parameters 1D 131
 routing parameters 104
 user preferences 349
set command 130, 348
SFO1 parameter 292
Shell 20

shift
 1D data down 129
 1D data smoothly 129
 1D data to the extreme left 129
 1D data to the extreme right 129
 1D data to the left 129
 1D data to the right 129
 1D data up 129
 1D/2D data 41, 48
 2D data down 171
 2D data smoothly 171
 2D data to the left 171
 2D data to the right 171
 2D data up 171
 data in multiple windows 126
 individual spectra in multiple display 26, 218, 224
 row/column in 2D phase 243
Shift key 69, 76, 88, 219, 222
Shift-Tab key 99, 103
short description
 of an AU program 322
shortcuts for processing 107
show command 60
SIGF1 parameter 273
SIGF2 parameter 273
signal region 273, 274
signal to noise calculation 273
Simplex algorithm 285
simulating experiments 31
sine
 baseline correction 228
single commands 106
slider sensitivity 303
slopes correction 208
smail command 30, 38
smooth
 1D phase correction 243
 1D scaling 40
 1D shifting 129
 1D zooming 40, 128
 1D/2D shifting 41
 2D shifting 171
 scaling of 1D integrals 211
 scanning of planes in 3D 190
 shifting of 1D integrals 212
solvent 72
spec command 130
special format data 30
spectrometer
 frequency 292
spectrometer hardware 21, 22
Spectrometer menu 37, 290
spectrum
 display 1D 130
 objects 348, 349
 overview 1D 154
 overview 2D 178
Spectrum tab 130, 154, 161
square 2D layout 169
square brackets 37, 51, 125, 130
sref command 106, 110, 217, 259
stacked multiple display 224
Start button 79
startup actions 348
status line font 363
status parameter
 change 100
 display 103, 158
 display 1D 131, 132
stdisp command 311
stop an acquisition 291
stop command 291, 293, 307
store
 2D contour levels 184
structure file 152
Structure tab 152
sum spectrum
 in multiple display 222
superimpose
 1D spectra 218
cursor information 157
electronic signature 159
integral trails/labels 158
main status parameters 158
peak labels 158
spectra 26
title of a dataset 158
SW parameter 292
swap data windows 270
sweep width 292
swin command 270
switch
to the last 2D data 38
to the last 3D data 38

T
T1 calculation 16
T1/T2 Relaxation 280
t1guide command 280
T2 calculation 16
Tab bar
 1D 125, 130
 2D 167, 174
 configuration 130, 354
 font 361
 usage 130
Tab key 99, 103
tabbed pane 174, 354
TCP/IP port 340
temperature unit window 269
Terminal Window 20
time domain signal 31
title bar 124, 125, 166, 263, 264, 267, 268, 269, 322
title file 133
title of a dataset 25, 69, 72, 133, 158, 305, 356
Title tab 133
toccpn command 85
tojdx command 30, 85
toolbar
 1D 198
 2D 238
 configuration 366
 extension 378
 for acquisition 290
 icons 379, 381
 of the data window 26, 154
 of the FID display window 307
 tips 51
 usage 38
 tooltips 50, 51
top level directory 23, 64, 71

Topspin
 color schemes 357
 data area 80, 83
 fonts 360
 help 50
 installation 318
 installation directory 318
 startup 18, 20
tailoring 348
window 35
topspin command 20
Topspin icon 20
totxt command 85
tozip command 29, 85
tshome directory 20, 51, 318
tuning the probehead 298

U
undo
 last parameter change 99, 103
 last region operation 213
unzip utility 30
Up Arrow key 42, 45
upper toolbar
 1D 38, 198
 2D 238
user defined
 AU programs 319
 buttons 378, 381, 383
 commands 27, 31
 functions keys 53
 plot layouts 118
User Interface functions 374
user preferences 348
user properties directory 53

V
Varian spectrometer 82
vertical scaling 127, 168
View menu 37, 157
virtual spectrometer 31
VNMR data 82

W
walk-up 32
wbst command 299
wbsw command 299
wildcards 88
window layout 269
Window menu 37, 270
WINNMR data 82
wm command 27, 96
wmisc command 85
wobb command 293, 298
wobble
 display 295
 frequency 299
 procedure 298
 steps 299
 sweep width 299
 window 298
wpar command 85
wra command 85
wrp command 85
wrpa command 29, 84, 85

X
xau command 322
x-axis rotation in 3D 187, 191
xmac command 31

Y
y-axis display 39, 155
y-axis rotation in 3D 187, 191

Z
z-axis rotation in 3D 191
zero order phase correction
 1D 202
 2D 242, 243
zg command 291, 293, 306
ZIP data format 29, 82
zoom
 1D data 40, 128
 2D data 170
 in 2D phase correction 240
zoom 1D/2D data 48